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ABSTRACT 

This document reports the application of the Nuclear-Renewable Hybrid Energy System (N-R HES) 

software framework to a case study conducted in collaboration with Arizona Public Service (APS). The 

study is a work in progress; this report presents a detailed description of the current model inputs and the 

corresponding results. 

APS is currently anticipating several operational challenges: First, APS is coping with the rapid growth 

of Variable Renewable Energy (VRE) sources on the grid in the APS service region. To mitigate the 

resulting demand volatility, APS is seeking to add more baseload. The second challenge to APS is that the 

cooling water acquisition contract with the Sub Regional Operating Group (SROG) will expire soon and a 

renewal is only available for a significantly higher price of water. An opportunity for less expensive water 

may be to pump brackish water from the regional ground water. One caveat is that the salinity of the 

brackish water is so high that it could, depending on the percentage used, need additional treatment via an 

on-site Reverse Osmosis (RO) desalination plant. The RO plant would help resolve both problems APS is 

facing, i.e. increasing the baseload to help mitigate VRE-induced demand volatility and, in addition, the 

clean water produced can be used by APS for plant cooling to lower their water acquisition cost. 

The analysis in this report considers three scenarios: (1) The status quo, where all cooling water is 

purchased from the SROG and no RO is built (CASE 0); (2) A case in which one RO is built on-site to treat 

the blend of SROG and brackish water (CASE 1); and (3) A case in which two ROs are built, one on-site 

and another one close to the brackish water well (CASE 2). The second RO could produce clean (potable) 

water that can be sold to generate additional revenue for APS. The analysis evaluates the differential Net 

Present Value (NPV) between the scenarios. 

To model the three APS cases, additional functionality for the N-R HES software framework was 

needed. In particular, the RAVEN CashFlow plugin was updated to add more flexibility in project and 

component definitions and the synthetic time history generator was updated to include the possibility to 

correlate the noise portion of different signals after Fourier de-trending. The report also includes description 

of how the reduced order RO model was derived from a high fidelity Modelica model. Furthermore, the 

physical models used for water flows and chemistry, as well as the economic models detailing the 

assumptions made and data used, are described. 

The report shows that the recently implemented correlated Auto-Regressive, Moving Average model 

(FVARMA) capability is working as intended. However, after removing the long-term trends and 

correlations by Fourier de-trending, no correlation could be found between the demand and the rooftop 

solar photovoltaics (rPV) or between the demand and the hub price in the stochastic portion of the signal, 

although it is suspected that such correlations exist and are important drivers for the economic analysis. It 

is worth mentioning that no industrial solar is considered in the evaluation, since per APS policy industrial 

solar is considered curtailable. The main conclusions concerning the input data are that, with regard to the 

rPV, higher resolution data is needed to perform a meaningful correlation analysis; for the hub price it is 

assumed that there actually is no (or only weak) correlation. Furthermore, the report shows that further 

work is needed to understand which net demand and hub price forecast models are right for this type of 

analysis. 

The future projection of the net demand and the hub prices show that APS could curtail its internal 

production to take advantage of negative electricity prices at the Palo Verde Hub. This could add up to an 

additional 10% of the APS revenue. While in principle adding more internal baseload (i.e. RO electricity 

consumption) enhances such capability, the size of the RO in this study is such that the effect is negligible. 

With regard to the overall economics of purifying brackish water, the study shows that no RO is needed up 

to ~8000 acre-foot of brackish water per year if one allows for variable chloride content in the cooling 

water. However, considering a hard limit of 450 ppm Cl-, an RO of ~500 kg/s capacity is necessary. In the 

latter case the delta NPV is negative, i.e. it is economically beneficial to continue buying all effluent water 
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rather than build the RO plant. For CASE 2, the size of RO needed is comparable to CASE 1. The resulting 

Levelized Cost of Water (LCOW) is ~1.5$/m3. A sensitivity study for the amount of brackish water 

purchased shows that the delta NPV is approximately constant, indicating that the savings associated with 

buying brackish water versus effluent purchased from SROG are roughly offset by the increased RO cost. 

However, when scaling the ROs for the volume weighted yearly average chloride concentration (instead of 

the maximum), the CASE 1 becomes economically viable while the LCOW for CASE 2 becomes ~1$/m3. 

This would suggest that using the reservoir ponds to mitigate salinity peaks could lead to an economically 

viable project. 
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Case Study: Nuclear-Renewable-Water Integration in 
Arizona 

 

1. INTRODUCTION 

This document reports the application of the Nuclear-Renewable Hybrid Energy System (N-R HES) 

software framework to a case study conducted in collaboration with Arizona Public Service (APS), the 

operating owner of the Palo Verde Generating Station (PVGS) Nuclear Power Plant (NPP). The case study 

is a work in progress; this report presents a detailed description of the current model input data, assumptions, 

and the corresponding results produced by the developed software framework. The goal of the report is to 

identify where more detailed data is required and more accurate model assumptions are necessary to 

reproduce all of the driving physical and economic phenomena in order to capture sufficient complexity to 

allow APS to apply the results to inform strategic decisions. 

Development of the N-R HES software framework was initiated at Idaho National Laboratory (INL) in 

2016 [1-7]. The framework has reached some level of maturity such that it can be applied to more than 

simple demonstration cases, e.g. real industry problems. Nevertheless, more capabilities are constantly 

added to accommodate the special needs of these challenging real-life problems. The N-R HES framework 

is built on top of the Risk Analysis Virtual Environment (RAVEN) code [8-10], which it uses as a driver 

and workflow manager for all calculations. The framework has specifically been developed for the 

economic assessment of N-R HESs. There are four main cornerstones of the N-R HES simulation 

framework: 1) generation of stochastic time series, 2) a probabilistic analysis and optimization set of 

algorithms available in RAVEN, 3) a set of models for representation of the physical behavior of N-R HES, 

and 4) a RAVEN plug-in called CashFlow [4] that maps physical performance into economic performance. 

Within this framework, a broad spectrum of questions related to N-R HES can be addressed. One of the 

challenges currently of high interest is that the increasing penetration of variable renewables is altering the 

profile of the net demand (demand after removing all non-curtailable renewable energy sources), with 

which the other generators on the grid have to cope. The N-R HES software framework is capable of 

analyzing the potential feasibility of mitigating the resultant volatility in the net electricity demand. One 

possible solution to manage net demand volatility that is being intensively studied by the energy industry 

is adding stabilizing loads to the grid. These loads can be external industrial processes that are able to ramp 

production up and down quickly or for regulated markets, adding variable internal loads that will effectively 

increase the baseload of the power plant and therefore reduce the risk of internal demand that is lower than 

the capacity of the power plant. The latter is a possible solution currently being considered by APS. 

APS is currently anticipating several operational challenges in the near future. One of these challenges 

is coping with the rapid growth of Variable Renewable Energy (VRE) sources on the grid. Although APS 

can sell its electricity for a fixed retail price (on a cost recovery base) to cover the local demand first, it also 

trades electricity at the local Palo Verde (PV) energy hub. Due to the growing VRE penetration, the PV 

Hub electricity spot price is negative more and more frequently, therefore APS can either sell excess 

electricity in moment of peak price or curtail its internal production to benefit from negative prices. To 

mitigate the demand volatility. APS is seeking to add more baseload, so that the quantity of excess energy 

to be sold for prices potentially less than the internal retail price or even negative prices at the hub is reduced. 

A second challenge APS is facing is that their cooling water acquisition contract with the Sub Regional 

Operating Group (SROG) will expire soon and a renewal can only be done for a significantly higher price 

of the water. Therefore, APS is also seeking alternative sources for their cooling water. An opportunity 

currently under investigation is to pump a limited quantity of brackish water from the regional ground 

water. Although much less expensive than the water from the new SROG contract, the salinity of the 

brackish water is so high that a blend of brackish and SROG water could need additional treatment to 
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improve its quality for use in the PVGS cooling towers. An on-site Reverse Osmosis (RO) desalination 

plant is envisaged to reduce the salinity to an acceptable level. 

This report investigates the economic impact of such an RO plant. The RO plant would help with both 

problems APS is facing. First, it would raise the APS baseload demand, helping to mitigate VRE-induced 

demand volatility. From this perspective the RO plant can be seen as a stabilizing load on the grid as would 

be any other industrial process. Second, the RO’s goods, e.g. the clean water produced, can be used by APS 

for a (hopefully) lower cost than the cost of 100% SROG water. 

The report first describes the detailed APS water procurement strategy and lays out the possible 

alternative scenarios studied in this document (Chapter 2). Next, in Chapter 3, the APS case model 

developed within the N-R HES software framework is described. This chapter also includes a description 

of the necessary framework developments to accommodate the APS study. Chapter 4 presents all the model 

input data and assumptions and discusses the simulation results. Finally, Chapter 5 includes the conclusions 

as well as suggestions for further studies. 

 

2. APS CASE DESCRIPTION 

As mentioned in the introduction, APS is trying to simultaneously address two challenges by 

considering on-site installation of an RO plant. First, operation of the RO will increase the APS internal 

load so that less electricity needs to be sold for potentially low (lower than retail) or even negative prices 

at the PV energy hub. This will mitigate some of the demand volatility introduced by increasing amounts 

of VRE. Second, the RO could allow production of lower cost clean (but not potable) water as needed in 

the PVGS cooling towers by blending brackish ground water with SROG water, which would then be 

processed through the RO, compared to buying 100% of the water from the more expensive SROG that 

would not require processing though RO. The analysis in this report considers 3 scenarios presented in the 

following sections: CASE 0) The status quo, where all cooling water is purchased from the SROG and the 

RO is not built. In CASE 1 one RO plant would be built on-site to treat the blend of SROG and brackish 

water. CASE 2 would require two RO plants, one on site like for CASE 1 and another one close to the 

brackish water well. This second RO could produce potable water that can be sold to the regional 

municipality to generate additional revenue for APS. The analysis evaluates the differential Net Present 

Value (NPV) between the scenarios. This method only considers the cash flows that actually change 

between the scenarios to determine the change in the NPV (NPV) (see Chapter 3.2.5). 

 

2.1 Status quo (CASE 0) 

The current APS water procurement strategy is as follows: Pre-treated effluent water is purchased from 

five local municipalities (the SROG) and is delivered to the PVGS Water Reclamation Supply System 

(WRSS) piping from the City of Phoenix 91st Avenue Waste-Water Treatment Plant (WWTP). The treated 

effluent is conveyed through the 36-mile WRSS piping system and arrives at the PVGS Water Reclamation 

Facility (WRF) where tertiary treatment is performed to achieve the water quality needed for the steam 

cycle cooling through large mechanical draft evaporative cooling towers. This scenario is shown in Figure 

1. In CASE 0 it is assumed that all water is purchased from the SROG (with the new contract and anticipated 

future pricing) and no RO is built. 

The effluent water that arrives at the WRF has a certain chemical composition that changes slightly 

during the year. The cooling towers have an established limit for the quantity of dissolved solids in the 

cooling water. Therefore, the WRF reduces the concentrations of some dissolved solids (softens the water) 

in the effluent water to an acceptable value through chemical means (mainly lime and soda ash). The most 

important impurities treated by the WRF are calcium, magnesium, sodium, sulfates as well as the total 

alkalinity.  
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The WRF is not well equipped to reduce the chloride content in the water, but the effluent water’s 

chloride content is below the cooling tower limit of 450 ppm most of the time. In addition, PVGS can use 

water with a higher chloride concentration, but in this case the amount of water needed to cool the plant 

increases linearly with the chloride content. There is no additional performance benefit in further reducing 

the chloride content below 450 ppm, i.e. the cooling water need is not reduced for Cl- <450 ppm. To 

illustrate this: for a chloride concentration <450 ppm, the nominal amount (100%) of cooling water is 

needed; it is possible to allow, for example, a chloride content of 475 ppm, but the cooling water required 

would increase to 100/450*475 = 105.5% of the nominal amount of cooling water. 

 

 

Figure 1: CASE 0. All water is purchased from the SROG and the RO is not built. 

 

2.2 One RO is built on site (CASE 1) 

The first case (CASE 1) considered in this study is shown in Figure 2. Abundant regional brackish 

groundwater is available and actively pumped to dewater local agricultural lands, thereby lowering the 

water table below the crop root zone (note that the salinity of the brackish groundwater is sufficiently high 

as to adversely affect agriculture). The brackish water is diverted and discharged downstream. Some portion 

of the brackish water may be diverted to the WRSS piping to blend with and offset the SROG effluent. 

Treatment (desalinization) would be required to improve the water quality to the level needed for plant 

steam cycle cooling. An RO plant design could be coordinated with the PVGS WRF. Note that this strategy 

will consider RO as baseline desalination technology, while other technologies may also be available. As 

one can see in Figure 2, the effluent and brackish water blend is first treated by the already existing WRF 

and then only a fraction () of the WRF outlet water is treated by the RO. The rest of the water is directly 

diverted to the reservoir ponds where it mixes with the treated water from the RO. The RO is capable of 

treating the water to a much cleaner level than needed by the PVGS cooling system. , and, therefore, the 

capacity of the RO, is determined such that the quality of the mixed water in the reservoir pond is above 

the threshold for the PVGS cooling towers. 

As mentioned under CASE 0, the WRF can reduce almost all major dissolved solids in the effluent 

water with the exception of chloride. The brackish water contains a much higher amount of chloride than 

the effluent water; hence, the resulting blend of effluent and brackish water may have a chloride 

concentration above the cooling tower limit depending on the amount of brackish water purchased. This 

case assumes that it is not possible to procure enough brackish water to cover the entire APS water need. 

Therefore, the APS cooling water will always be a blend of effluent and brackish. 
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Figure 2: CASE 1. Effluent water is purchased from the SROG and brackish water is pumped from the 

ground. This blended water needs to be treated in an on-site RO in addition to the WRF. 

 

2.3 Tow ROs are built (CASE 2) 

One might argue that, a priori, it is not clear if the RO should be built near the SROG and brackish 

water pump rather than on-site as considered in CASE 1. In addition, APS could, for example, decide to 

enter the water supply business and sell part of the purified water from the RO. This scenario would even 

be more relevant in the spirit of hybridization, as the RO would be used as a more flexible load (compared 

to CASE 1) to satisfy not only the internal water need, but to also produce a variable excess amount of 

water that could be sold for profit. It should also be mentioned that treated effluent water can only be sold 

with restrictions, while desalinated brackish water could be sold as potable water. 

There are two considerations to keep in mind for CASE 2: 

- Building only one RO at the SROG bears the problem that there are no evaporation ponds at the 

SROG to accommodate the waste stream from the RO. 

- The SROG and the brackish water acquisition site are ~40 miles from the PVGS site. Therefore, 

CASE 1 considers injecting the brackish water in the existing WRSS piping and transporting the 

blend of effluent and brackish water to the WRF and on-site RO. If APS would like to sell some of 

the purified water it has to consider that treated effluent water can only be sold with restrictions. In 

practice, to be able to sell water, only the brackish water should be treated in the RO, which would 

require separate piping from the SROG and brackish water pump location to the PVGS site. 

There are many locations on which the RO could be built. In the framework of this project, a second case 

(see Figure 3) has been selected for illustration purposes. Other cases may be studied in the future. 

The second case considers building two ROs, one at the SROG (RO2) and one at the PVGS site (RO1) 

like in CASE 1. CASE 2 takes CASE 1 as a base, but adds the second RO (RO2) at the SROG to treat the 

brackish water. The idea is that APS can sell the purified brackish water from RO2 (see the second 

consideration above) and inject the waste stream from that RO into the WRSS piping. This configuration 

avoids the need for evaporation ponds at the location of RO2 (see the first consideration above). APS can 

still reduce the amount of effluent water they need to buy by using the RO2 waste water, but the salinity of 
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the blended effluent and waste from the brackish water RO2 will likely be too high for the cooling system 

and would need treatment (like in CASE 1). Therefore, to reduce the salinity to a limit that the water can 

be used at the cooling towers, a second RO is needed. This second RO1 can be built at the PVGS site (as 

in CASE 1), where evaporation ponds are available. 

 

 

Figure 3: CASE 2. Effluent water is purchased from the SROG and brackish water is pumped from the 

ground. The brackish water is purified and sold, while the waste is blended with the effluent. This mix 

needs to be treated in an on-site RO in addition to the WRF. 

 

3. MODEL DESCRIPTION 

This section describes how the three APS cases described in Section 2 are modeled. In general, cases 

are modeled within the N-R HES software framework, where the framework provides some generic 

capabilities that can be used to build the case-specific models. To model the three APS cases, several 

additional framework developments are needed to provide all the generic functionalities needed. The first 

section of this chapter describes the added N-R HES framework functionalities. In the second section of 

this chapter, the APS models (for the three considered cases) within the N-R HES framework are described 

in detail. This chapter also includes a description of how the reduced order RO model used in the APS case 

models has been derived from a high fidelity Modelica model. 

 

3.1 N-R HES framework developments 

As mentioned, this section reports the N-R HES framework developments that are needed to model the 

APS cases. 

 

3.1.1 Reverse Osmosis model development 

This section is dedicated to the model development for an RO desalination plant (or simply referred to 

as an “RO plant”), in particular a low-fidelity representation of the physical behavior of the plant that is 
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based on a high-fidelity model developed previously [11-13]. A system overview of the proposed RO plant 

for the APS case study is also provided. 

RO desalination utilizes a semi-permeable membrane that allows water to pass through but not salts, 

thus separating the fresh water from the saline feed water. A typical Brackish Water RO (BWRO) plant 

(see Figure 4(a)) consists of four main components: feedwater pretreatment, High-Pressure (HP) pumping, 

membrane separation, and permeate (fresh water) post-treatment. Figure 4(b) depicts the configuration of 

an RO vessel (a multi-element module) used in RO desalination, which is typically comprised of six to 

eight membrane modules connected in series. The concentrate water rejected by the first membrane module 

plays a role as the feed water for the second membrane module by the successive order, and so on. These 

pressure vessels are arranged in rows in each membrane stage, with two-stage membrane separation being 

typical in BWRO. Each stage has a recovery of 50–60%, achieving overall system recovery of 70–85% 

[14]. 

Recently, INL proposed the detailed dynamic modeling and control design of a two-stage BWRO plant, 

in which the modeling efforts were focused on the two main components: HP pumping and membrane 

separation units (enclosed in the dashed rectangle shown in Figure 4(a)) [11-13, 15, 16]. In this report, this 

high-fidelity model served as a starting point for deriving a low-fidelity representation of the proposed 

BWRO plant; additional assumptions and simplifications made for the APS case study are as follows: 

• HP pumping accounts for 90.4% of the total energy consumption in the BWRO facility, i.e., an RO 

pretreatment system accounts for 9.6% of the total energy consumption in the BWRO facility. 

• The system dynamics are, relatively speaking, much faster than the sampling rate (i.e., one hour); 

thus, steady-state assumption is valid. 

• Feed water may contain up to six solids (solutes): bicarbonate (HCO3
-), calcium (Ca2+), magnesium 

(Mg2+), sodium (Na+), chloride (Cl-), and sulfate (SO42-). 

The plant was sized for 698 m3 hr-1 (4.43×106 gallons per day), which requires 402 kWe of electrical 

power to generate the required feed (operating) pressure (12 barg) for desalting the brackish water, 

containing 900 ppm of Total Dissolved Solids (TDS). Table 1 reports the nominal design specifications of 

the proposed BWRO plant. Table 2 shows the specifications of the FilmTech 8″ BW30-400 membrane, i.e., 

a spiral-wound module manufactured by Dow Chemical, chosen for simulation in this work. 

A high-fidelity model (i.e., Modelica model) might provide an accurate reflection of reality but requires 

high computational power; thus, an approximation model (i.e., surrogate model) that mimics the behavior 

of the high-fidelity model as closely as possible while being computationally efficient to evaluate is 

constructed. 

The linear regressor1 is proposed to characterize the relationship shown in Eq. (1) between the feed 

flow rate mf (i.e., a decision variable set by RAVEN) and the power consumption in the Feedwater Pump 

(FWP) PFWP (in We):  

𝑃𝐹𝑊𝑃 = 𝑘0 + 𝑘1𝑚𝑓 (1) 

where k1 and k0 are the model-fitting parameters. Several simulations were conducted to estimate the model 

estimates by linear regression. Regression results for Eq. (1) are plotted in Figure 6. The estimated model-

fitting parameters and the goodness of model fit (R2 value) are listed in Table 3. Note that the simulation 

results showed that the dependency of the feed salinity Sf on PFWP is negligible; hence, feed salinity was not 

considered in Eq. (1). The quality of the surrogate model fits compared to the Modelica model outputs 

indicates excellent model fits. 

                                                      
1 The linear regressor is a least-squares fitting of the response of the system for a linear representation (linear regression). 
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Figure 4: RO desalination: (a) process flow diagram for a two-stage BWRO plant and (b) schematic of an 

RO vessel, which consists of six membrane modules in series [12]. 

 

Table 1: BWRO plant specifications. 

Symbol Description Unit Value 

pump Pump efficiency % 80 

 Pump shaft rotational speed rpm 2240 

Vop Valve opening of the pneumatic pressure control valve % 80 

NVE Number of pressure vessels per HP pump – 110 

NST Number of stages – 2 

NM Number of RO modules per one pressure vessel (or stage) – 6 

Tf Feed temperature °C 25 

Sf Feed salinity ppm 900 

pf Feed (operating) pressure barg 12 

pp Permeate pressure barg 0 

Qp Permeate volumetric flow rate m3 hr-1 

[gal day-1] 

698 

[4.43×106] 

PBWRO Rated electrical load in the BWRO plant kWe 402 

pS  Average permeate salinity (quality) ppm 16.8 

RS Salt rejection % 99.4 

Rw1 Water recovery in the first stage % 47 

Rw2 Water recovery in the second stage % 62 

Rw Overall water recovery % 80 



 

 8 

Table 2: Model parameters for the FilmTech 8" BW30-400 membrane [12]. 

Symbol Description Unit Value 

lBR Brine channel length of an RO element m 0.8665 

hBR Brine channel height of an RO element m 7.112×10-4 

hsp Spacer thickness m 7.112×10-4 

wBR Brine channel width of an RO element m 1.34 

nl Number of leaves per one RO module – 16 

BR Overall void fraction of the brine channel – 0.9 

asp Specific surface area of the spacer m-1 11.2×103 

dh Hydraulic diameter m 9.1×10-4 

Am Total membrane area per one RO module m2 [ft2] 37.2 [400] 

As Membrane area occupied by precipitation m2 [ft2] 1.86a [20] 

1 Constant for solvent transport – 8.646 

2 Constant for solvent transport bar-1 0.0149 

1 Constant for solute transport – 14.65 

Lv0 Intrinsic solvent transport parameter m Pa-1 s-1 1.042×10-11 

Ls0 Intrinsic solute transport parameter m s-1 1.333×10-8 
a Equivalent membrane fouling in terms of percentage at this value is 5%. 

 

The proposed system was dynamically modeled with the Modelica2 modeling language [17] using the 

commercially available Modelica-based modeling and simulation environment, i.e., Dymola version 2017 

FD01 [18]. Figure 5 shows the top-level model for the BWRO plant implemented in Modelica. 

As mentioned in the previous section, HP pumping only accounts for 90.4% of the total energy 

consumption in the BWRO facility PBWRO; therefore, Eq. (2) is proposed to estimate the total energy 

consumption in the plant: 

𝑃𝐵𝑊𝑅𝑂 =
𝑃𝐹𝑊𝑃

0.904⁄  (2) 

Figure 7 and Figure 8 show the permeate flow rate mp and salinity Sp, respectively, simulated by the 

high-fidelity model as functions of feed stream conditions. In these examples, an osmotic pressure 

correction factor Fπ, defined by Eq. (5), was set to be 1. 

As can see in Figure 7, the permeate flow rate increases as the feed flow rate increases for any given 

feed salinity. Also, at a given feed flow rate, it is expected to produce more permeate water with lower feed 

salinity. In Figure 8, the results show that the permeate salinity is inversely proportional to the feed flow 

rate (or equivalently the permeate flow rate) for any given feed salinity. In other words, the higher the feed 

flow rate, the purer the permeate stream. On the other hand, at a given feed flow rate, the permeate quality 

(or salt rejection) worsens as the feed salinity increases. 

 

                                                      
2 Modelica is an object-oriented equation-based programming language, oriented toward computational applications with high 

complexity requiring high performance. 
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Figure 5: Top-level model for the BWRO plant implemented in Modelica. 

 

 

Figure 6: FWP power consumption (PFWP) predicted by the high-fidelity (blue points) and surrogate (red 

dashed line) models. 
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Table 3: Model parameter estimates for Eq. (1). 

Symbol Description Unit 

 

Value 

k0 Model parameter We 2.886×10-1 

k1 Model parameter We s kg-1 1.500×103 

R2 Goodness of fit – 1.000 

 

 

Figure 7: Permeate flow rate (mp) versus feed flow rate (mf) simulated for a range of feed salinity (Sf) by 

the high-fidelity model. 

 

 

Figure 8: Permeate salinity (Sp) versus feed flow rate (mf) simulated for a range of feed salinity (Sf) by the 

high-fidelity model. 
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In order to predict the permeate flow rate (in kg s-1), the following set of equations is proposed: 

𝑚𝑝 = 𝑘0 + 𝑘1𝑚𝑓 + 𝑘2𝑆𝑓 + 𝑘3𝐹𝜋 + 𝑘4𝑚𝑓𝑆𝑓 + 𝑘5𝑚𝑓𝐹𝜋 + 𝑘6𝑆𝑓𝐹𝜋 + 𝑘7𝑚𝑓
2 + 𝑘8𝑆𝑓

2 + 𝑘9𝐹𝜋
2 (3) 

𝑆𝑓 = ∑𝐶𝑓,𝑖

𝑖

 (4) 

𝐹𝜋 =
∑

𝑆𝑓,𝑖

𝑀𝑊𝑖
𝑧𝑖𝑖

𝑆𝑓
𝑀𝑊𝑁𝑎𝐶𝑙

2

 (5) 

where k0–k9 are the model-fitting parameters, Sf,i is the solute concentration of species i in the feed, MWi is 

the molecular weight of species i, zi is the number of valence electrons associated with species i, and MWNaCl 
is the molecular weight of sodium chloride. The correction factor (Fπ) takes into account the difference 

between the medium containing multiple solids (up to six solutes as mentioned previously) and the medium 

containing only Na+ and Cl- for the same concentration of TDS in the feed. Similarly, Eq. (6) is proposed 

to approximate the permeate salinity (in ppm) as a function of feed stream conditions: 

𝑆𝑝 = 𝑘0 + 𝑘1𝑚𝑓 + 𝑘2𝑆𝑓 + 𝑘3𝐹𝜋 + 𝑘4𝑚𝑓𝑆𝑓 + 𝑘5𝑚𝑓𝐹𝜋 + 𝑘6𝑆𝑓𝐹𝜋 + 𝑘7𝑚𝑓
2 + 𝑘8𝑆𝑓

2 + 𝑘9𝐹𝜋
2 (6) 

Figure 9 and Figure 10 show selected representative plots for mp and Sp, respectively, simulated with 

the high-fidelity models (Modelica models) and the corresponding surrogate models fitted by nonlinear 

regression. The estimated model-fitting parameters and R2 values are listed in Table 4. The surrogate models 

are superior in terms of the goodness of fit. 

 

 

Figure 9: Permeate flow rate (mp) predicted by the high-fidelity (points) and surrogate (lines) models. 

 



 

 12 

 

Figure 10: Permeate salinity (Sp) predicted by the high-fidelity (points) and surrogate (lines) models. 

 

Table 4: Model parameter estimates for Eqs. (3) and (6). 

Symbol Description Eq. (3) Eq. (6) 

Unit Value Unit Value 

k0 Model parameter kg s-1 -68.25 ppm 7.041×102 

k1 Model parameter – 1.828 ppm s kg-1 -4.427 

k2 Model parameter kg s-1 ppm-1 2.684×10-2 – 3.482×10-3 

k3 Model parameter kg s-1 29.03 ppm -4.151×102 

k4 Model parameter ppm-1 -1.820×10-4 s kg-1 1.007×10-5 

k5 Model parameter – -1.966×10-1 ppm s kg-1 1.148 

k6 Model parameter kg s-1 ppm-1 -1.614×10-2 – 3.376×10-3 

k7 Model parameter s kg-1 -2.227×10-3 ppm s2 kg-2 7.386×10-3 

k8 Model parameter kg s-1 ppm-2 5.758×10-7 ppm-1 1.587×10-6 

k9 Model parameter kg s-1 7.562×10-1 ppm 85.38 

R2 Goodness of fit – 0.998  – 0.991 

 

The solute concentration of species i in the permeate Sp,i is estimated as follows: 

𝑆𝑝,𝑖 = 𝑆𝑓,𝑖 ∙ 𝑦𝑓,𝑖 (7) 

𝑦𝑓,𝑖 =
𝑆𝑓,𝑖

𝑆𝑓
⁄  (8) 

where yf,i is the fraction of species i among TDS in the feed. The retentate (concentrate) flow rate mr and 

the solute concentration of species i in the retentate stream Sr,i can be calculated based on the law of mass 

conservation: 



 

 13 

𝑚𝑟 = 𝑚𝑓 − 𝑚𝑝 (9) 

𝑆𝑟,𝑖 =
𝑚𝑓𝑆𝑓,𝑖 − 𝑚𝑝𝑆𝑝,𝑖

𝑚𝑟
 (10) 

The retentate salinity Sr is the sum of Sr,i: 

𝑆𝑟 = ∑𝑆𝑟,𝑖

𝑖

 (11) 

3.1.2 CashFlow developments 

RAVEN’s CashFlow plugin is used in the N-R HES framework to map physical performance of a 

system into economic performance. The module is able to compute the NPV, the Internal Rate of Return 

(IRR) and the Profitability Index (PI). Furthermore, it is possible to conduct an NPV, IRR or PI search, i.e. 

CashFlow will compute a multiplicative value (for example, the production cost) so that the NPV, IRR or 

PI has a desired value. To fulfill the requirements of the APS cases on the cash flow calculations, the 

following extensions of the CashFlow plugin have been made: 

CashFlow drivers 

The CashFlow plugin allows definition of an arbitrary number of cash flows from which the 

indicators (NPV, PI, etc.) are computed. Each cash flow is of the form given in Eq. 12. 

 𝐶𝐹𝑦 = 𝑚 ∙ 𝛼𝑦 (
𝑑𝑟𝑖𝑣𝑒𝑟𝑦

𝑟𝑒𝑓
)
𝑋

 (12) 

where CF is the cash flow for year y 

 m is an optional scalar multiplier 

  is the multiplier of the cash flow for each year 

 ref is the reference for which  is given 

 X is the economy of scale factor, 0 < 𝑋 < 1 indicates an economy of scale while 𝑋 > 1 

indicates a diseconomy of scale. 

 driver is the cash flow driver. In previous versions of the CashFlow plugin, the driver was 

the same for all years for which the cash flow is computed, i.e. for all “y”. With this update, 

the driver can be either a scalar or a vector with the length of the lifetime of the project. If it 

is a scalar, all drivery in Eq. 12 are the same for all years of the project life. If it is a vector, 

then each year of the project will have its corresponding value for the driver. 

Tax and inflation 

The CashFlow plugin can apply tax and inflation to the cash flows if needed. In previous versions of 

the plugin the tax and inflation rate were global inputs. That means the user could choose if tax (yes/no) 

and inflation (none, real or nominal) needed to be applied for each cash flow individually, but the same tax 

and inflation rates would apply for all cash flows. In the current version, the plugin allows different tax and 

inflation rates for each defined “component.” A “component” is a collection of cash flows that share the 

same properties, such as lifetime and with this update also tax and inflation. If no tax or inflation rates are 

specified for a “component,” the rates defined as “global” rates in the input will be applied. 
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Project management 

As mentioned, the CashFlow plugin allows grouping of cash flows together into “components.” A 

component is typically a part of the system that has the same lifetime and the same cash flows, i.e. for a 

battery or a plant. To compute the economic indicators (NPV, IRR, etc.), previous versions of the CashFlow 

plugin compute the Least Common Multiple (LCM) of all component lifetimes. Components with short 

lifetimes are re-built successively at the end of their lifetime until the LCM is reached. Running the global 

project to the LCM of all components guarantees that the NPV is computed for a time span so that all 

components reach their end of life in the same year. The individual component cash flows are repeated until 

the LCM is reached. For example, assume the calculation involves two components Component1 and 

Component2, with life times of 60 years and 40 years, respectively. The global project time will be 120 

years where 2 successive Component1 and 3 successive Component2 will be built. For every ‘building 

year’, the cash flow for the last year (of the old component) and the year zero (for the newly built 

component) will be summed. Table 5 shows an example for illustration. 

 

Table 5: Example cash flows for NPV calculation. 

  Component 1  Component 2   

Year  Comp. 

lifetime 

Cash Flow 

(year) 
 Comp. 

lifetime 

Cash Flow 

(year) 
 Total Net Cash flow 

0  0 𝐶𝐹0
𝐶𝑜𝑚𝑝𝑜1

  0 𝐶𝐹0
𝐶𝑜𝑚𝑝𝑜2

  𝐶𝐹0
𝐶𝑜𝑚𝑝𝑜1 + 𝐶𝐹0

𝐶𝑜𝑚𝑝𝑜2
 

1  1 𝐶𝐹1
𝐶𝑜𝑚𝑝𝑜1

  1 𝐶𝐹1
𝐶𝑜𝑚𝑝𝑜2

  𝐶𝐹1
𝐶𝑜𝑚𝑝𝑜1 + 𝐶𝐹1

𝐶𝑜𝑚𝑝𝑜2
 

…  ..   …    

39  39 𝐶𝐹39
𝐶𝑜𝑚𝑝𝑜1

  39 𝐶𝐹39
𝐶𝑜𝑚𝑝𝑜2

  𝐶𝐹39
𝐶𝑜𝑚𝑝𝑜1 + 𝐶𝐹39

𝐶𝑜𝑚𝑝𝑜2
 

40  40 𝐶𝐹40
𝐶𝑜𝑚𝑝𝑜1

  40 and 0 
𝐶𝐹40

𝐶𝑜𝑚𝑝𝑜2

+ 𝐶𝐹0
𝐶𝑜𝑚𝑝𝑜2

 
 𝐶𝐹40

𝐶𝑜𝑚𝑝𝑜1 + 𝐶𝐹40
𝐶𝑜𝑚𝑝𝑜2

+ 𝐶𝐹0
𝐶𝑜𝑚𝑝𝑜2

 

41  41 𝐶𝐹41
𝐶𝑜𝑚𝑝𝑜1

  1 𝐶𝐹1
𝐶𝑜𝑚𝑝𝑜2

  𝐶𝐹41
𝐶𝑜𝑚𝑝𝑜1 + 𝐶𝐹1

𝐶𝑜𝑚𝑝𝑜2
 

…  …   …    

59  59 𝐶𝐹59
𝐶𝑜𝑚𝑝𝑜1

  19 𝐶𝐹19
𝐶𝑜𝑚𝑝𝑜2

  𝐶𝐹59
𝐶𝑜𝑚𝑝𝑜1 + 𝐶𝐹19

𝐶𝑜𝑚𝑝𝑜2
 

60  60 and 0 
𝐶𝐹60

𝐶𝑜𝑚𝑝𝑜1

+ 𝐶𝐹0
𝐶𝑜𝑚𝑝𝑜1

 

 20 𝐶𝐹20
𝐶𝑜𝑚𝑝𝑜2

  𝐶𝐹60
𝐶𝑜𝑚𝑝𝑜1 + 𝐶𝐹0

𝐶𝑜𝑚𝑝𝑜1

+ 𝐶𝐹20
𝐶𝑜𝑚𝑝𝑜2

 

61  1 𝐶𝐹1
𝐶𝑜𝑚𝑝𝑜1

  21 𝐶𝐹21
𝐶𝑜𝑚𝑝𝑜2

  𝐶𝐹1
𝐶𝑜𝑚𝑝𝑜1 + 𝐶𝐹21

𝐶𝑜𝑚𝑝𝑜2
 

…  …   …    

79  19 𝐶𝐹19
𝐶𝑜𝑚𝑝𝑜1

  39 𝐶𝐹39
𝐶𝑜𝑚𝑝𝑜2

  𝐶𝐹19
𝐶𝑜𝑚𝑝𝑜1 + 𝐶𝐹39

𝐶𝑜𝑚𝑝𝑜2
 

80  20 𝐶𝐹20
𝐶𝑜𝑚𝑝𝑜1

  40 and 0 
𝐶𝐹40

𝐶𝑜𝑚𝑝𝑜2

+ 𝐶𝐹0
𝐶𝑜𝑚𝑝𝑜2

 
 𝐶𝐹20

𝐶𝑜𝑚𝑝𝑜1 + 𝐶𝐹40
𝐶𝑜𝑚𝑝𝑜2

+ 𝐶𝐹0
𝐶𝑜𝑚𝑝𝑜2

 

81  21 𝐶𝐹21
𝐶𝑜𝑚𝑝𝑜1

  1 𝐶𝐹1
𝐶𝑜𝑚𝑝𝑜2

  𝐶𝐹21
𝐶𝑜𝑚𝑝𝑜1 + 𝐶𝐹1

𝐶𝑜𝑚𝑝𝑜2
 

…  …   …    

119  59 𝐶𝐹59
𝐶𝑜𝑚𝑝𝑜1

  39 𝐶𝐹39
𝐶𝑜𝑚𝑝𝑜2

  𝐶𝐹59
𝐶𝑜𝑚𝑝𝑜1 + 𝐶𝐹39

𝐶𝑜𝑚𝑝𝑜2
 

120  60 𝐶𝐹60
𝐶𝑜𝑚𝑝𝑜1

  40 𝐶𝐹40
𝐶𝑜𝑚𝑝𝑜2

  𝐶𝐹60
𝐶𝑜𝑚𝑝𝑜1 + 𝐶𝐹40

𝐶𝑜𝑚𝑝𝑜2
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The new developments for the CashFlow allow more flexibility in how the global project time and 

individual components are handled. The following new inputs have been made available in the current 

version of CashFlow: 

<Global>input <ProjectTime>: This is an optional input. If it is included in the input file, the global 

project time is not the LCM of all components, but the time indicated 

here. 

<Component> input <StartTime>:  This is an optional input. If this input is specified for one or more 

components, the <Global> input <ProjectTime> is required. This 

input specifies the year in which this component will be built for the 

first time, i.e. when it will be included in the cash flows. The default 

is 0 and the component is built at the start of the project, i.e. at project 

year 0. For example, if the <ProjectTime> is 100 years, and for this 

component, the <StartTime> is 20 years, the cash flows for this 

component will be zero for years 0 to 19 of the project. Year 20 of 

the project will be year 0 for this component and so on (project year 

21 will be component year 1, etc.). 

<Component> input <Repetitions>: This is an optional input. If this input is specified for one or more 

components, the <Global> input <ProjectTime> is required. This 

input specifies the number of times this component will be rebuilt. 

The default is 0, which indicates that the component will be rebuilt 

indefinitely until the project end (<ProjectTime>) is reached. Assume 

the <ProjectTime> is 100 years, and the component <Life time> is 

20 years. Specifying 3 repetitions of this component will build 3 

components in succession, at years 0, 20 and 40. For years 61 to 100 

of the project, the cash flows for this component will be zero. 

 

3.1.3 FVARMA developments 

At the end of 2017, the Auto-Regressive Moving-Average (ARMA) algorithms in RAVEN had many 

essential elements for simulating time-dependent events based on training data [19, 20]. This includes using 

Fourier series to de-trend training data, using an empirical Cumulative Distribution Function (CDF) to 

normalize the residual, and reversing the process to produce new synthetic samples. 

As the needs of ongoing projects in 2018 were considered, it became apparent there were some 

deficiencies in the ARMA that required feature expansion. First, each data set required an independent 

ARMA, and no correlation could be preserved between the sets. This means weather events and energy 

events that should exhibit correlation, such has unusually hot summer days and spikes in demand, could 

not be preserved in synthetic histories. Second, a separate ARMA was required for each data set, even if no 

correlation was observed. Allowing the training of multiple data sets in a single ARMA surrogate helps 

prevent risk of mismatching histories and provides a more convenient method to work with both the 

synthetic data and the surrogates themselves. Finally, the Fourier plus ARMA (FARMA) combination 
proved to be unsuitable for simulating solar irradiance when considered over multiple days, because of the 

lack of irradiation during the night. Additional algorithms were needed to allow accurate capturing of this 

kind of signal. 

To address the lack of correlation, multiplicity of surrogates, and inability to capture solar irradiance 

data, the following new enhancements were implemented in the FARMA model. 

Correlated ARMA 

A methodology is available to extend the self-correlated data regression in the ARMA to consider 

additional data series. This treatment results in a vector of correlated data series trained in an ARMA, or 

Vector ARMA (VARMA). While the ARMA uses autoregression and moving average algorithms to 
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correlate data within its own history, the VARMA extends that correlation to consider the cross effects of 

regression terms in data series among each other. This allows capturing phenomena such as spikes in air 

temperature leading to spikes in demand. 

To demonstrate this feature, a multivariate normal distribution was used to generate training data for 

two target variables, “A” and “B”. Both share a mean of 42 and variance of 25, and the covariance between 

“A” and “B” is 22. The resulting training data is shown in the upper right of Figure 11. The correlation 

between the two is readily observed: increases in “A” tend to occur in tandem with increase in “B”, and 

conversely. For clarity, no Fourier trends were included. 

Once the VARMA was trained, a sample of the surrogate was taken, and the results considered. The 

two left-side figures in Figure 11 show the original data in comparison to the synthetic histories; as 

expected, they share little resemblance except in mean and variance. In the lower-right figure in Figure 11 

the synthetic data is shown together, and they show the same kind of correlation exhibited in the original 

data. In this manner, correlation can be preserved in the creation of synthetic histories. 

 

 

Figure 11: Correlated VARMA demonstration. Upper right: training data. Upper left: training versus 

synthetic for “A”. Lower left: training versus synthetic for “B”. Lower right: synthetic data. 
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Combined ARMA Models 

To extend the portability, flexibility, and consistency of ARMA surrogate usage, the FARMA algorithm 

in RAVEN was expanded to train multiple targets in a single entity (Fourier plus VARMA (FVARMA)). 

Part of this work has been done in conjunction with the Fuel Cycle Option (FCO) campaign which shared 

the same needs. Due to timing constraints and the shared need, while NR-HES developed the theoretical 

formulation of the algorithm, a different team took charge of the deployment in RAVEN under FCO. As 

with previous efforts, the resulting surrogate was then portable between workflows as a single model that 

sampled all the trained targets simultaneously. Even if the targets are not correlated, the results originate 

from the same training data. In order to assure proper treatment of targets, the domain-limiting “out 

truncation” option was reworked to accept a list of the targets for whom a domain limitation should be 

applied, and a “specific Fourier” option was added to allow individual targets to make use of different base 

Fourier detrending periods. 

By way of example, the wind speed (“Speed”) and energy demand (“Demand”) were considered for a 

week-long period. The composition of the signals is shown in Figure 12 and Figure 13. While Demand 

shows considerable stability in its day-to-day cycle, the wind shows very little daily trend and instead sees 

trends in a multi-hour period. Both of these targets were trained in the same FVARMA, but used different 

Fourier periods to capture their trends. 

 

 

Figure 12: Wind Speed for a Week-Long Period in ERCOT North-Central Region, June 2007. Black and 

white background indicates day and night for better visibility of daily trends in the signal. 
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Figure 13: Energy Demand for a Week-Long Period in ERCOT North-Central Region, June 2007. Black 

and white background indicates day and night for better visibility of daily trends in the signal. 

Zero-Filtering 

Previous data analyzed (energy demand, wind speed) varied continuously throughout a 24-hour period, 

which made Fourier analysis a suitable tool to capture the behavior. Solar irradiance, measured as Global 

Horizontal Irradiance (GHI), however, has a single peak each day but a flat line at night. While the peaks 

are suitable for Fourier analysis, the flat lines are very difficult to capture using Fourier series. When the 

two are combined, the detrending stage often underestimates the daytime trends in an attempt to minimize 

error during the night, resulting in overestimating the variance during the day and introducing variance 

during the night, which should remain flat at zero. This can be seen in Figure 14. The orange line indicates 

the original training data, while the blue lines are the synthetic samples from the unfiltered, trained 

FVARMA. Note in the original training data there are two fairly normal days, followed by a day with 

significantly reduced irradiance for part of the day, introducing significant variance. 

The unfiltered samples shown in Figure 14 demonstrate much smaller peak amplitudes on average, 

reaching only 400 W/m^2 on average instead of nearly 600. In addition, there is significant solar activity at 

night, with both negative and positive irradiance showing, when it should be zero. 

To combat this phenomenon, an additional feature was added to the FVARMA called “zero filtering”. 

When this filtering is requested, the algorithm takes note of the times in which the signal is nearly zero,  

then splits the construction of the FVARMA into two parts: one where the zero-filtered target is zero, and 

one that encompasses the remaining non-filtered time. An FVARMA is then trained for all targets during 

the non-filtered times, and for all except the zero-filtered target during filtered times. The results of these 

two FVARMAs are then recombined to create a consistent signal with correlations preserved for other 

targets during both night and day cycles, and correlations involving the GHI preserved during day cycles. 

An example of this is shown in Figure 15, especially in contrast to Figure 14. Note that the nighttime 

irradiance is precisely zero for all the nights, while there are still signals appropriate to the training data 

during the day. 
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Figure 14: Global Horizontal Irradiance (GHI): Original and Unfiltered Synthetic Data, 3 days. 

 

 

Figure 15: Global Horizontal Irradiance (GHI): Original and Zero-Filtered Synthetic Data, 3 days. 
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3.2 APS case model within N-R HES framework 

This section describes how the three cases described in Section 2 are modeled using the N-R HES 

software framework. It also explains how the additional N-R HES framework developments detailed in the 

previous section (3.1) have been used. Before taking a closer look into the model, some nomenclature is 

introduced. 

3.2.1 Nomenclature 

This section summarizes the general nomenclature used for the APS case model within the N-R HES 

framework. It should be noted that the models and equations presented in the report may be using different 

units (Imperial, SI, chemical concentrations in dissolved ions or as equivalent of some other quantity, etc). 

The equations are implemented as presented, but the unit transformations performed are not presented here 

for easier reading of the equations. 

Facilities Naming 

WRF Water Reclamation Facility. 

RO1 Reverse osmosis plant after the WRF. 

RO2 Reverse osmosis plant in Buckeye. 

Pump Pumping facility to inject brackish water in the pipeline in Buckeye. 

 

Indexes 

𝑗 Index for years (1…J). 

𝑖 Index for month in year (1…12). 

𝑘 Index for days in a month (1…30). 

𝑙 Index for hours in a day (1…24). 

𝑙𝑙 Index for hours in a year (1…8760). 

𝐽 NPP residual life (NumberOfYears in Table 6). 

 

Facilities Characterization (WRF) 

𝑊𝑊𝑅𝐹
𝐼𝑁

 WRF inflow [kg/month]. 

𝑊𝑊𝑅𝐹
𝑂𝑈𝑇

 WRF treated water outflow [kg/month]. 

𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑊𝑅𝐹
𝐼𝑁

 Chemistry of WRF inlet water (concentration of 6 tracked chemicals in [ppm]). 

𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑊𝑅𝐹
𝑂𝑈𝑇

 Chemistry of WRF outlet water (concentration of 6 tracked chemicals in [ppm]). 

𝑃𝑃𝑀𝑐𝑎𝑙𝑊𝑅𝐹
𝑂𝑈𝑇

 WRF outlet calcium concentration (as CaCO3) [ppm]. 

𝑃𝑃𝑀𝑚𝑎𝑔𝑊𝑅𝐹
𝑂𝑈𝑇

 WRF outlet magnesium concentration (as CaCO3) [ppm]. 

𝑃𝑃𝑀𝑠𝑜𝑑𝑊𝑅𝐹
𝐼𝑁

 WRF inlet sodium concentration [ppm]. 

𝑃𝑃𝑀𝑠𝑜𝑑𝑊𝑅𝐹
𝑂𝑈𝑇

 WRF outlet sodium concentration [ppm]. 

𝑃𝑃𝑀𝑎𝑙𝑘𝑊𝑅𝐹
𝑂𝑈𝑇

 WRF outlet total alkalinity (as CaCO3) [ppm]. 

𝑃𝑃𝑀𝑐𝑙−𝑊𝑅𝐹
𝐼𝑁

 WRF inlet chloride concentration [ppm]. 

𝑃𝑃𝑀𝑐𝑙−𝑊𝑅𝐹
𝑂𝑈𝑇

 WRF outlet chloride concentration [ppm]. 

𝑃𝑃𝑀𝑠𝑢𝑙𝑊𝑅𝐹
𝑂𝑈𝑇

 WRF outlet sulfate concentration [ppm]. 

𝐸𝑊𝑅𝐹 Electricity consumption function for the WRF [MWh/month]. 
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𝐹𝑊𝑅𝐹 Fixed cost of WRF [$/capacity]. 

𝑉𝑊𝑅𝐹 Variable (and fixed) cost function of the WRF excluded electricity [$/volume]. 

𝐶𝐴𝑃𝐸𝑋𝑊𝑅𝐹  Unit capital cost of WRF [$/capacity]. 

 

Facilities Characterization (RO1) 

𝐶𝑅𝑂1 Capacity of RO1 [kg/s] 

𝑊𝑅𝑂1
𝑂𝑈𝑇

 RO1 treated clean water (permeate) [kg/month]. 

𝑊 𝑅𝑂1
𝑊𝑎𝑠𝑡𝑒

 RO1 waste stream [kg/s]. 

𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑅𝑂1
𝑂𝑈𝑇

 Chemistry of clean RO1 outlet (permeate) water (concentration of 6 tracked chemicals in 

[ppm]). 

𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝑅𝑂1
𝑊𝑎𝑠𝑡𝑒

 Chemistry of RO1 waste water (concentration of 6 tracked chemicals in [ppm]). 

𝐸𝑅𝑂1 Electricity consumption function for the RO1 [Wh/month]. 

𝐹𝑅𝑂1 Fix cost for RO1 [$/capacity (kg/s)]. 

𝑉𝑅𝑂1 Variable cost function of the RO1 excluded electricity [$/volume]. 

𝐶𝐴𝑃𝐸𝑋𝑅𝑂1 Unit capital cost for RO1 [$/capacity (kg/s)]. 

 

Facilities Characterization (RO2) 

𝐶𝑅𝑂2 Capacity of RO2 [kg/s] 

𝑊𝑅𝑂2
𝑂𝑈𝑇

 RO2 treated clean water (permeate) [kg/s]. 

𝑊 𝑅𝑂2
𝑊𝑎𝑠𝑡𝑒

 RO2 waste stream [kg/s]. 

𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑅𝑂2
𝑂𝑈𝑇

 Chemistry of clean RO2 outlet (permeate) water (concentration of 6 tracked chemicals in 

[ppm]). 

𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝑅𝑂2
𝑊𝑎𝑠𝑡𝑒

 Chemistry of RO2 waste water (concentration of 6 tracked chemicals in [ppm]). 

𝐸𝑅𝑂2 Electricity consumption function for the RO2 [Wh/month]. 

𝐹𝑅𝑂2 Fix cost for RO2 [$/capacity (kg/s)]. 

𝑉𝑅𝑂2 Variable cost function of the RO2 excluded electricity [$/volume]. 

𝐶𝐴𝑃𝐸𝑋𝑅𝑂2 Unit capital cost for RO2 [$/capacity (kg/s)]. 

 

Facilities Characterization (Evaporation Pond) 

𝑊𝐸𝑣𝑃  Water inflows in the evaporation ponds [kg/month]. 

𝑊𝑏𝑙𝑜𝑤𝑑𝑜𝑤𝑛  Water blown down from the PVGS cooling towers to the evaporation ponds [kg/month]. 

𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑏𝑙𝑜𝑤𝑑𝑜𝑤𝑛  Water chemistry of blown down from the PVGS cooling towers to the evaporation ponds 

(concentration of 6 tracked chemicals in [ppm]). 

 

Facilities Characterization (Brackish water pumping station) 

𝐶𝑅𝑂1 Capacity of the brackish water pump [kg/s]. 

𝐸𝑃𝑢𝑚𝑝 Electricity consumption function for the brackish water pump [kWh/month]. 

𝐹𝑃𝑢𝑚𝑝 Fix cost for brackish water pump [$/capacity (kg/s)]. 

𝑉𝑃𝑢𝑚𝑝 Variable cost function of the brackish water pump excluded electricity [$/volume]. 

𝐶𝐴𝑃𝐸𝑋𝑃𝑢𝑚𝑝 Unit capital cost for brackish water pump [$/capacity (kg/s)]. 
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Global quantities 

𝑃𝐸,𝑊 Wholesale electricity price [$/MWh] (EL_wholesale_price in Table 6). 

𝑃𝐸,𝑅 Retail electricity price [$/MWh] (EL_wholesale_price + EL_RetWholeDiff in Table 6). 

𝑃𝐸,𝐻𝑢𝑏 Electricity price at the PV Hub [$/MWh]. 

𝑃𝐵𝑟 Price of brackish water [$/acre-foot] (PBrackish in Table 6). 

𝑃𝑒𝑓𝑓  Price structure of effluent water [$/acre-foot]. This includes multiple tiers and a 

dependency on the year. 

𝑃𝑒𝑛𝑎𝑙𝑡𝑦 The non-usage fee payed for water not used [$]. 

𝐻𝑜𝑢𝑠𝑒𝐿𝑜𝑎𝑑 The PVGS house load [MW] (HouseLoad in Table 6). 

𝑊𝐴𝐶𝐶𝐴𝑃𝑆 Weighted Average Cost of Capital (WACC) (APS) [%]. 

𝑊𝐴𝐶𝐶𝑃𝑉 WACC (APS PVGS) [%]. 

𝐼𝑛𝑓 Projected inflation rate [%]. 

𝑇𝑎𝑥 Corporate tax rate [%]. 

𝐷𝑗  Depreciation % at year j [%]. 

𝛼 Fraction of water outgoing from the WRF to the RO1 [%]. This is a constant for a given 

evaluation of the model (RO1_split in Table 6). 

𝑊𝑃𝑉 PVGS cooling water needs [kg/month]. This is an input to the model (Cooling in Table 

6). Different values by month can be input. 

𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑃𝑉 PVGS cooling water chemistry (concentration of 6 tracked chemicals in [ppm]). 

𝑃𝑃𝑀𝑃𝑉𝑚𝑎𝑥 Acceptable maximum chloride concentration in the PVGS cooling water [ppm]. This is 

an input to the model (limit_clo_ppm in Table 6). 

𝐵𝑙𝑜𝑤𝐷 Amount of water blown down from the PVGS cooling towers to the evaporation ponds 

[%]. This is an input the model (Blowdown in Table 6). 

𝑊𝑒𝑓𝑓 Effluent water bought from the SROG [kg/month]. This is not an input, but has to be 

solved for a given set of inputs. 

𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑒𝑓𝑓  Chemistry of effluent water (concentration of 6 tracked chemicals in [ppm]). This is an 

input to the model (Chem_cal_eff, Chem_mag_eff, Chem_sod_eff, Chem_alk_eff, 

Chem_clo_eff, Chem_sul_eff in Table 6). Different values by month can be input. 

𝑊𝐵𝑟 Brackish water pumped from ground water [kg/month]. This is an input to the model 

(W_brackish in Table 6). Different values by month can be input. 

𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝐵𝑟 Chemistry of brackish water (concentration of 6 tracked chemicals in [ppm]). This is an 

input to the model (Chem_cal_brackish, Chem_mag_brackish, Chem_sod_brackish, 

Chem_alk_brackish, Chem_clo_brackish, Chem_sul_brackish in Table 6). Different 

values by month can be input. 

𝑁𝑃𝑃𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒  Variable cost of the PVGS NPP [$/production]. 

𝑁𝑃𝑃𝐹𝑖𝑥𝑒𝑑  Fixed cost of the PVGS NPP [$/capcaity]. 

𝑃𝑜𝑤𝐴𝑃𝑆 Power share of PVGS belonging to APS [MW] (PowAPS in Table 6). 

𝑃𝑜𝑤𝐴𝑃𝑆% Power share of PVGS belonging to APS [%] (PowAPS% in Table 6). 

𝐸𝐷𝑁𝑒𝑡  Electricity Net Demand [MW]. 

𝐸𝑆𝐴𝑃𝑆 𝑃𝑉 Electricity sold by APS of PVGS shares [$/y]. 

 

3.2.2 Overall data flow 

Figure 16 shows the overall data flow of the APS cases as modeled in the N-R HES framework. As one 

can see, first a “sampler” in RAVEN provides all the inputs needed by the subsequent models. A list of all 

inputs provided by the sampler is given in Table 6. This “sampler” can be any sampler available in RAVEN, 

for example a “Grid Sampler” to run sensitivity studies on the inputs or an optimizer to find an optimal set 

of inputs with respect to a target variable, e.g. the maximum NPV. The sampled inputs are then distributed 

to the subsequent models in the framework. Note that the sampler only provides inputs to the physical 
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models, i.e. “ARMA PostP”, “APS Model” and “NPV PreP” in Figure 16. The economics are treated by 

the RAVEN CashFlow plugin (“NPV” in Figure 16) and its inputs are collected in a separate input file (see 

Section 4.1). 

 

Table 6: Model inputs provided by the RAVEN “sampler”. 

Variable name in model Description 

RO1_split 
The percentage of water that goes to the RO after the WRF ( in Figure 1 

to Figure 3). The unit is [%]. 

NumberOfYears 
The number of years considered in the Cash Flow calculation for the 

global project lifetime. The unit is [years]. 

PowAPS Nominal PVGS power output. The unit is [W]. 

PowAPS% Share of APS at PVGS. The input unit is [%]. 

EL_wholesale_price Retail electricity price. The unit is [$/MWh]. 

EL_RetWholeDiff Difference between retail and wholesale price [$/MWh]. 

HouseLoad APS house load. The unit is [W]. 

Blowdown 
The percentage of water that goes from the cooling towers to the 

evaporation ponds. The unit is in [%]. 

PBrackish Brackish water price. The unit is [$/acre-foot]. 

W_brackish 
Amount of brackish water blend with the SROG water. 12 different values, 

one for every month can be input. The unit is [kg]. 

Chem_cal_brackish Calcium concentration in brackish water. The unit is [ppm]. 

Chem_mag_brackish Magnesium concentration in brackish water. The unit is [ppm]. 

Chem_sod_brackish Sodium concentration in brackish water. The unit is [ppm]. 

Chem_alk_brackish Total alkalinity (as CaCO3) in brackish water. The unit is [ppm]. 

Chem_clo_brackish Chloride concentration in brackish water. The unit is [ppm]. 

Chem_sul_brackish Sulfate concentration (as SO4) in brackish water. The unit is [ppm]. 

limit_clo_ppm Chloride limit in the PVGS cooling water system. The unit is [ppm]. 

Cooling 
Amount of cooing water needed at the cooling towers. 12 different values, 

one for every month can be input. The unit is [kg]. 

Chem_cal_eff 
Calcium concentration (as CaCO3) in effluent water. 12 different values, 

one for every month can be input. The unit is [ppm]. 

Chem_mag_eff 
Magnesium concentration (as CaCO3) in effluent water. 12 different 

values, one for every month can be input. The unit is [ppm]. 
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Chem_sod_eff 
Sodium concentration in effluent water. 12 different values, one for every 

month can be input. The unit is [ppm]. 

Chem_alk_eff 
Total alkalinity (as CaCO3) in effluent water. 12 different values, one for 

every month can be input. The unit is [ppm]. 

Chem_clo_eff 
Chloride concentration in effluent water. 12 different values, one for every 

month can be input. The unit is [ppm]. 

Chem_sul_eff 
Sulfate concentration in effluent water. 12 different values, one for every 

month can be input. The unit is [ppm]. 

 

For the APS cases, the first model run by the framework is the one that computes the physics of the 

system, i.e. tracks the water quantities and chemical compositions from the water acquisition points through 
the WRF and RO to the PVGS cooling towers and finally into the evaporation ponds. This physical model 

is shown in Figure 16 as “APS model” and described in more detail in Section 3.2.4. 

Next, the “Correlated ARMA” (FVARMA) is run to prepare the stochastic input data for the economic 

analysis. The FVARMA generates correlated synthetic data for the APS internal demand, the non-

curtailable rooftop solar (rPV) production and the PV Hub price. A description of how the net demand and 

PV Hub prices are generated for the lifetime of the project is given in Section 3.2.3. 

Then, the NPV pre-processor (“NPV PreP” in Figure 16) is run. This module will compute the cash 

flow drivers needed by the NPV modules. For example, “NPV PreP” will compute the electricity 

consumption of the RO. This drives the electricity cost cash flow that is computed by the NPV module. 

“NPV PreP” receives the outputs from the APS model, i.e. water mass flows and chemical compositions of 

the water at different points in the system. In addition, the needed inputs from the sampler as well as the 

net demand and PV Hub prices form the FVARMA are also passed to the NPV preprocessor. Finally, the 

cash flow drivers are passed to the NPV modules. The NPV module runs three times, one time for each 

APS case considered in this study. The NPV module computes all the cash flows from the input cash flow 

drivers, applies taxation, inflation if needed and discounts the cash flows to finally compute the NPV for 

each case. For case two, instead of the NPV itself, the cash flow module computes the Levelized Cost of 

Water (LCOW), i.e. the cost of the water produced by the RO2, so that the overall system NPV is zero. The 

“NPV PreP” and NPV modules including all the cash flows considered in this problem are described in 

detail in Section 3.2.5. 

Finally, the outputs of the NPV modules, i.e. the NPVs for cases 1 and 2 as well as the LCOW for case 

2 are passed back to the sampler in RAVEN. For parametric studies on the inputs, the passed back results 

are just stored in a file together with the inputs for further analysis, like plotting. If the sampler is an 

optimizer, the results are used to construct a gradient and a decision is made as to how the inputs need to 

be changed to move toward a more optimal solution. The optimizer iterates until it converges on the 

optimum or the maximum number of iterations is reached. The inputs and outputs for all iteration steps of 

the optimizer are stored in a file for subsequent analysis, e.g. to make plots. 

 

 

3.2.3 FVARMA and “ARMA PostP” 

As mentioned, the FVARMA produces the synthetic time histories for the APS internal demand, the 

rPV production as well as the PV electricity hub price. It is worth mentioning that no industrial solar is 

considered in the evaluation, since per APS policy industrial solar is considered curtailable. First, synthetic 

shapes for one year for all of these data are produced and passed into the subsequent models. The choice of 
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input parameters for the FVARMA model (like Fourier frequencies for de-trending, ARMA model time 

history parameters “P” and “Q”, etc.) is crucial for the model to produce good synthetic data [19]. In 

addition, these parameters strongly depend on the shape of the input training data. The measured input 

training data as well as a study on the parameters to be used for the APS data in the FVARMA model, i.e. 

an APS data analysis, is provided later in Section 4.1.2. 

Once the data is generated, the demand and rPV solar generation are passed into the ARMA 

postprocessor “ARMA PosP”. The postprocessor scales the demand and solar data from the FVARMA for 

future years and computes the net demand for the length of the project (“NumberOfYears” in Table 6). The 

postprocessor currently supports two scaling options to produce the future net demand. (“Forecast” in the 

postprocessor input): 

- The demand is scaled exponentially with an exponent that can be input in the postprocessor as 

“DemandScalingFactor” while the rPV is scaled linearly with the coefficient “rPVAddedCapacity”. 

- Both the demand and the rPV are scaled exponentially using the “DemandScalingFactor”. 

The first-year demand is taken directly from the sampled FVARMA. Subsequent years are scaled by 

the user input value. Similarly, the first year of rPV generation is taken directly from the rPV FVARMA. 

For the rPV the user can choose between two growth models: an exponential scaling, like for the demand, 

or a linear model with a fixed addition per year. In the second case, the user inputs the rPV scaling factor 

in units of MW added per year. To apply this capacity addition to generation numbers appropriately, a 

capacity factor profile is calculated. The input rPV generation is divided by the initial rPV capacity (660 

MW) in each hour of the year. The capacity factors are multiplied by the yearly capacity addition and added 

to the generation that corresponds to the same hour. This method ensures that the capacity addition does 

not add generation in hours that did not have generation in the first year. This assumes that each year’s 

capacity additions occur at the beginning of the year. 

After demand and rPV generation are scaled, rPV generation is subtracted from demand to develop a 

net demand profile. rPV is considered “must take” generation by APS, meaning that the utility is required 

to use all the generation rPV produces. Subtracting the rPV production from demand ensures that all the 

rPV generation is used to meet demand. The net demand is then passed into the larger cash flow model. 

The synthetic electricity prices for the PV electricity hub are directly passed into the “NPV PreP” 

module. The synthetic data generated for one year is repeated for the length of the project. 
 

3.2.4 APS model 

As mentioned, the physics of the system are computed by the “APS model” in the software framework. 

The “APS model” tracks the water quantities (mass flows) and chemical composition through the system 

from the water acquisition point to the cooling towers and eventually evaporation ponds. The time 

discretization for all variables is monthly. The concentrations (in ppm) of six different dissolved solids are 

tracked (𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗), namely: 

- Calcium 

- Magnesium 

- Sodium 

- Total Alkalinity 

- Chloride 

- Sulfate. 
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Figure 16: Data flow of the APS case model inside the N-R HES software framework. 

 

The inputs to the model are: 

- The cooling water needed by the cooling towers (WPV). 

- The maximum acceptable chloride concentration in the water at the cooling towers (PPMPVmax). 

- The effluent water chemistry, i.e. the concentrations of the six above mentioned chemicals 

(𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑒𝑓𝑓) at the WWTP. 

- The amount of brackish water pumped (WBr). 

- The brackish water chemistry, i.e. the concentrations of the six above mentioned chemicals 

(𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝐵𝑟) at the brackish water pump. 

Looking at the above model inputs, one can see that WPV is an input while Weff is an unknown. Ideally, the 

transfer functions of the RO and WRF can be inverted and the system can be solved from the back, i.e. 

starting from the cooling towers (point 3 (WPV) in Figure 16) and go back to the water acquisition points 

(point 0 (Weff) in Figure 16). Unfortunately, the system is not analytically invertible and has to be solved 

iteratively. The “Brent” root finding algorithm [21] has been used to find Weff for the above inputs. 

Therefore, the system’s equations are implemented in a “forward” manner from the water acquisition (point 

0 in Figure 16) to the evaporation ponds (point 3 in Figure 16) and then subject to the “Brent” algorithm. 

The “reservoir ponds” are not modeled in this first version of the APS model. It is assumed that the 

monthly production of cooling water matches exactly the PVGS cooling water needs for each month 

( 𝑊𝑃𝑉,𝑖 =  𝑊𝑅𝑂1,𝑖
𝑂𝑈𝑇

+ (𝛼 − 1)𝑊𝑊𝑅𝐹,𝑖
𝑂𝑈𝑇

 , ∀𝑖) and there is no possibility to store produced water for later use. 

This assumption allows solution of the problem for each month independently, i.e. Weff,i can be found solely 

as a function of the above inputs at month “i”. 
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The current version of the APS model allows one to change the allowable maximum chloride 

concentration at the cooling towers. The model uses the input water quantities if the maximum chloride 

concentration is lower than 450 ppm without scaling, i.e. there is no gain in water consumption for lower 

chloride concentrations (  𝑊𝑃𝑉  𝑖𝑓 𝑃𝑃𝑀PVmax ≤  450𝑝𝑝𝑚). On the other hand, if the input maximum 

chloride concentration is larger than 450 ppm, the water need for the cooling towers is scaled linearly, i.e.  

 ( 𝑊𝑃𝑉 ∙  
𝑃𝑃𝑀PVmax

450
 𝑖𝑓 𝑃𝑃𝑀PVmax > 450𝑝𝑝𝑚). (13) 

All needed cash flow drivers (electricity consumption, mass flow rate, etc.) can be computed when the 

mass flow rate and chemical composition of the water at the four points indicated in Figure 16 are known 

(see numbers 0-4 in “APS model” in Figure 16). 

Point 0 

The first point where knowledge of the water flow is needed is at the water source. In particular, the 

effluent water characteristics at the WWTP outlet ( 𝑊𝑒𝑓𝑓 and  𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑒𝑓𝑓 ) and the water characteristics at the 

brackish water pump ( 𝑊𝐵𝑟 and  𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝐵𝑟) must be known. As mentioned,  𝑊𝐵𝑟,  𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐵𝑟 and  𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑒𝑓𝑓  are 

inputs while  𝑊𝑒𝑓𝑓 is found iteratively. 

Points 1 and 4 

The next point at which knowledge of the water characteristics is needed is point 1 in Figure 16 (𝑊𝑊𝑅𝐹
𝐼𝑁

 

and 𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑊𝑅𝐹
𝐼𝑁

). There are three cases: the first is when RO2 is not present and no brackish water is pumped 

(CASE 0); the second is when brackish water is pumped, but the RO2 is still not built (CASE 1); and, 

finally, the third case includes the brackish water pump and the RO2 (CASE 2). 

In CASE 0, the water conditions at the WRF inlet are the conditions at the WWTP outlet, i.e. 

 𝑊1
𝐶𝐴𝑆𝐸0 = 𝑊𝑊𝑅𝐹

𝐼𝑁
= 𝑊𝑒𝑓𝑓  (14) 

 PPM⃗⃗⃗⃗ ⃗⃗⃗⃗  ⃗
1
CASE0 = PPM⃗⃗⃗⃗ ⃗⃗⃗⃗  ⃗WRF

IN
= PPM⃗⃗⃗⃗ ⃗⃗⃗⃗  ⃗

eff. (15) 

If the RO2 is not present but brackish water is pumped, i.e. in CASE 1 where the brackish water is directly 

injected into the WRSS, the needed quantities at point 1 are 

 𝑊1
𝐶𝐴𝑆𝐸1 = 𝑊𝑊𝑅𝐹

𝐼𝑁
= 𝑊𝑒𝑓𝑓 + 𝑊𝐵𝑟 (16) 

 𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
1
𝐶𝐴𝑆𝐸1 = 𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑊𝑅𝐹

𝐼𝑁
=

𝑃𝑃𝑀⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗  𝑒𝑓𝑓𝑊𝑒𝑓𝑓+𝑃𝑃𝑀⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗  𝐵𝑟𝑊𝐵𝑟

𝑊𝑒𝑓𝑓+𝑊𝐵𝑟
. (17) 

Finally, there is the case where the RO2 is present (and brackish water is pumped), i.e. CASE 2. In this case 

the brackish water is first treated in the RO2 and the waste stream is then injected into the WRSS while the 

permeate clean water can be sold for profit. Therefore, to compute the water characteristics at point 1, we 

first need to find the water characteristics at the outlet of RO2 (permeate and waste stream). For that we 

use the RO transfer function (ftransfer RO) defined in Section 3.1.1. The capacity of RO2 is the maximum 

brackish water mass flow it sees during the year, i.e. 

 𝐶𝑅𝑂2 = max
𝑖

(𝑊𝐵𝑟,𝑖). (18) 

Knowing 𝐶𝑅𝑂2, the permeate conditions (which are the water characteristics at point 4 in Figure 16) can be 

obtained as 

 𝑊4 = 𝑊𝑅𝑂2
𝑂𝑈𝑇 

= 𝑓𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑅𝑂(𝑊𝐵𝑟 , 𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝐵𝑟 , 𝐶𝑅𝑂2) (19) 



 

 28 

 𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
4 = 𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑅𝑂2

𝑂𝑈𝑇 
= 𝑓𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑅𝑂(𝑊𝐵𝑟 , 𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐵𝑟 , 𝐶𝑅𝑂2). (20) 

Furthermore, the waste water characteristics for RO2 are found with 

 𝑊 𝑅𝑂2
𝑊𝑎𝑠𝑡𝑒 

= 𝑓𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑅𝑂(𝑊𝐵𝑟 , 𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝐵𝑟 , 𝐶𝑅𝑂2) (21) 

 𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝑅𝑂2
𝑊𝑎𝑠𝑡𝑒 

= 𝑓𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑅𝑂(𝑊𝐵𝑟 , 𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝐵𝑟 , 𝐶𝑅𝑂2). (22) 

Finally, knowing the RO2 waste water characteristics, the water conditions at point 1 for CASE 2 can be 

found as follows: 

 𝑊1
𝐶𝐴𝑆𝐸2 = 𝑊𝑊𝑅𝐹

𝐼𝑁
= 𝑊𝑒𝑓𝑓 + 𝑊 𝑅𝑂2

𝑊𝑎𝑠𝑡𝑒
 (23) 

 𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
1
𝐶𝐴𝑆𝐸2 = 𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑊𝑅𝐹

𝐼𝑁
=

𝑃𝑃𝑀⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗  𝑒𝑓𝑓𝑊𝑒𝑓𝑓+𝑃𝑃𝑀⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗  𝑅𝑂2
𝑊𝑎𝑠𝑡𝑒

 
𝑊 𝑅𝑂2

𝑊𝑎𝑠𝑡𝑒

𝑊𝑒𝑓𝑓+𝑊 𝑅𝑂2
𝑊𝑎𝑠𝑡𝑒

. (24) 

Point 2 

Next, the water characteristics at point 2, i.e. at the WRF outlet, need to be found. For that the WRF 

transfer function is used (ftransfer WRF): 

 𝑊2  = 𝑊𝑊𝑅𝐹
𝑂𝑈𝑇

= 𝑓𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑊𝑅𝐹 (𝑊𝑊𝑅𝐹
𝐼𝑁

, 𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑊𝑅𝐹
𝐼𝑁

) (25) 

  𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
2 = 𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑊𝑅𝐹

𝑂𝑈𝑇  
= 𝑓𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑊𝑅𝐹 (𝑊𝑊𝑅𝐹

𝐼𝑁
, 𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑊𝑅𝐹

𝐼𝑁
) (26) 

For the WRF transfer function, it is assumed that all chemical concentrations can be reduced to a fixed 

value, except sodium and chloride, which are just passed through, i.e. not changed in the WRF. The values 

to which the other chemical concentrations are reduced are the average WRF outlet concentrations for the 

year 2017 [22]. All the WRF inlet water is treated, i.e. the WRF has no waste stream. The implemented 

equations for ftransfer WRF are as follows: 

 𝑊𝑊𝑅𝐹
𝑂𝑈𝑇

= 𝑊𝑊𝑅𝐹
𝐼𝑁

 (27) 

 𝑃𝑃𝑀𝑐𝑎𝑙𝑊𝑅𝐹
𝑂𝑈𝑇

= 90.6 (28) 

 𝑃𝑃𝑀𝑚𝑎𝑔𝑊𝑅𝐹
𝑂𝑈𝑇

= 32.1 (29) 

 𝑃𝑃𝑀𝑠𝑜𝑑𝑊𝑅𝐹
𝑂𝑈𝑇

= 𝑃𝑃𝑀𝑠𝑜𝑑𝑊𝑅𝐹
𝐼𝑁

 (30) 

 𝑃𝑃𝑀𝑎𝑙𝑘𝑊𝑅𝐹
𝑂𝑈𝑇

= 32.3 (31) 

 𝑃𝑃𝑀𝑐𝑙−𝑊𝑅𝐹
𝑂𝑈𝑇

= 𝑃𝑃𝑀𝑐𝑙−𝑊𝑅𝐹
𝐼𝑁

 (32) 

 𝑃𝑃𝑀𝑠𝑢𝑙𝑊𝑅𝐹
𝑂𝑈𝑇

= 223.0 (33) 

Point 3 

Finally, the water characteristics at the PVGS cooling towers must to be known (point 3 in Figure 16, 

𝑊𝑃𝑉 and 𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑃𝑉). Two cases exist: First, CASE 0 where the RO1 is not present and second CASE 1 & 

CASE 2 where RO1 is built. 

In the case where the RO1 is not present, the PVGS cooling tower water characteristics are the same as 

at the WRF outlet, i.e. 
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 𝑊3
𝐶𝐴𝑆𝐸0  = 𝑊𝑃𝑉  = 𝑊𝑊𝑅𝐹

𝑂𝑈𝑇
 (34) 

  𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
3
𝐶𝐴𝑆𝐸0 = 𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑃𝑉 = 𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑊𝑅𝐹
𝑂𝑈𝑇  

 (35) 

In the case where the RO1 is present, to compute the water characteristics at point 3 we first need to find 

the water characteristics at the outlet of RO1 (permeate and waste stream). For that we use the RO transfer 

function (ftransfer RO) defined in Section 3.1.1. First, the capacity of RO1 (𝐶𝑅𝑂1) is found so that the RO1 

permeate together with the water mixed back from the WRF outlet can satisfy the PVGS cooling tower 

needs at all times. Intuitively, this condition should happen for max
𝑖

(𝑊𝑃𝑉,𝑖), but the RO efficiency is non-

linear and a larger RO could be needed for less 𝑊𝑃𝑉 . Therefore, the capacity of RO1 is solved for iteratively. 

Knowing 𝐶𝑅𝑂1, the permeate conditions can be obtained as 

 𝑊𝑅𝑂1
𝑂𝑈𝑇 

= 𝑓𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑅𝑂(𝛼𝑊𝑊𝑅𝐹
𝑂𝑈𝑇

, 𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑊𝑅𝐹
𝑂𝑈𝑇  

, 𝐶𝑅𝑂1) (36) 

 𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑅𝑂1
𝑂𝑈𝑇 

= 𝑓𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑅𝑂(𝛼𝑊𝑊𝑅𝐹
𝑂𝑈𝑇

, 𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑊𝑅𝐹
𝑂𝑈𝑇  

, 𝐶𝑅𝑂1). (37) 

Similarly, the waste water characteristics for RO1 are found with 

 𝑊 𝑅𝑂1
𝑊𝑎𝑠𝑡𝑒 

= 𝑓𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑅𝑂(𝛼𝑊𝑊𝑅𝐹
𝑂𝑈𝑇

, 𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑊𝑅𝐹
𝑂𝑈𝑇  

, 𝐶𝑅𝑂1) (38) 

 𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝑅𝑂1
𝑊𝑎𝑠𝑡𝑒 

= 𝑓𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑅𝑂 (𝛼𝑊𝑊𝑅𝐹
𝑂𝑈𝑇

, 𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑊𝑅𝐹
𝑂𝑈𝑇  

, 𝐶𝑅𝑂1). (39) 

Finally, knowing the RO1 water characteristics, the water conditions at point 3 for CASE 1 and CASE 2 

can be found as follows: 

 𝑊3
𝐶𝐴𝑆𝐸1,2 = 𝑊𝑃𝑉 = (1 − 𝛼)𝑊𝑊𝑅𝐹

𝑂𝑈𝑇
+ 𝑊𝑅𝑂1

𝑂𝑈𝑇
 (40) 

 PPM⃗⃗⃗⃗ ⃗⃗⃗⃗  ⃗
3
CASE1,2 = PPM⃗⃗⃗⃗ ⃗⃗⃗⃗  ⃗

PV =
PPM⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗  WRF

OUT
(1−α)WWRF

OUT
+PPM⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗  RO1

OUT
 
WRO1

OUT

(1−α)WWRF
OUT

+WRO1
OUT

. (41) 

Evaporation ponds 

The amount of water going to the evaporation points is computed as follows 

 𝑊𝐸𝑃 = 𝑊 𝑅𝑂1
𝑊𝑎𝑠𝑡𝑒

+ 𝑊𝑏𝑙𝑜𝑤𝑑𝑜𝑤𝑛  (42) 

where 

 𝑊𝑏𝑙𝑜𝑤𝑑𝑜𝑤𝑛 = 𝑊𝑃𝑉 ∙ 𝐵𝑙𝑜𝑤𝐷. (43) 

 

3.2.5 Economics (“NPV PreP” and “NPV”) 

This section details the NPV PreP and NPV modules in Figure 16. These modules compute all the cash 

flows considered in the economics analysis of the different cases studied. The cash flow analysis is 

calculated using a differential approach, which means: 

 ∆𝑁𝑃𝑉𝐶𝑎𝑠𝑒 = 𝑁𝑃𝑉𝐶𝑎𝑠𝑒 − 𝑁𝑃𝑉𝑅𝑒𝑓  (44) 

If ∆𝑁𝑃𝑉𝐶𝑎𝑠𝑒 > 0 it indicates that the case under current consideration is better than the reference situation 

(in our case the status quo CASE 0). Differential analysis assumes that the following values are not changing 

between the different cases: 
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• 𝐹𝑊𝑅𝐹 

• 𝐶𝐴𝑃𝐸𝑋𝑊𝑅𝐹  

• NPPVariable 

• NPPfixed 

 

CASE 0 (Status Quo) 

To evaluate CASE 0 we try to isolate the cash flow, or, better, the part that could be affected by the 

water supply strategy, which is seen by APS as the owner of 29.1% (𝑃𝑜𝑤𝐴𝑃𝑆%) of PVGS. Considering 

the 29.1% ownership of the PVGS by APS, we should consider 29.1% of the cooling water related expenses 

(𝑁𝑃𝑉𝑊𝑎𝑡𝑒𝑟
𝐴𝑃𝑆

0 ) and the whole amount of electricity sold of the APS quota (𝑁𝑃𝑉 𝐸𝑙
𝐴𝑃𝑆

0 ). 

We assume that 

 𝑁𝑃𝑉𝐴𝑃𝑆
0 =  𝑃𝑜𝑤𝐴𝑃𝑆% ⋅ 𝑁𝑃𝑉𝑊𝑎𝑡𝑒𝑟

𝑃𝑉

0 + 𝑁𝑃𝑉 𝐸𝑙
𝐴𝑃𝑆

0  (45) 

 𝑁𝑃𝑉𝑊𝑎𝑡𝑒𝑟
𝑃𝑉

0 = ∑
(1−𝑇𝑎𝑥)

(1+𝑊𝐴𝐶𝐶𝑃𝑉)𝑗
{−𝐶𝑊𝑗

0 − 𝐶𝑉𝑗
0 − 𝐶𝐸𝑗

0}𝐽
𝑗=1  (46) 

where: 

• 𝐶𝑊𝑗
0 Total annual costs from water acquisition. 

• 𝐶𝑉𝑗
0 Total annual water costs from variable sources (excluded electricity and water). 

• 𝐶𝐸𝑗
0 Total annual water costs from electricity consumption. 

The total annual cost from water acquisition (𝐶𝑊𝑗
0) is computed as follows: 

 𝐶𝑊𝑗
0 = ∑ (𝑃𝑒𝑓𝑓,𝑗(𝑊𝑒𝑓𝑓,𝑖))

12
𝑖=1 + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑗(𝑊𝑒𝑓𝑓,𝑗

0 ) (47) 

where: 

• 𝑃𝑒𝑓𝑓,𝑗(𝑊𝑒𝑓𝑓,𝑖) Monthly effluent water price as a function of the amount of effluent water 

bought by month [23]. This function includes multiple tiers, i.e. the first x acre-

feet have a certain price [$/acre-foot], then the next y acre-feet have a different 

price, etc. In addition, the price differs from year to year. 

• 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑗(𝑊𝑒𝑓𝑓,𝑗
0 ) Yearly penalty for non-usage [23]. If at the end of the year, there is less water 

bought than contracted, a penalty for that “non-used” amount has to be played. 

The penalty is 20% of the average cost over the different tiers for that year. It 

is assumed that the contracted amount of water is 80000 acre-feet/year minus 

the planned amount of brackish water bought, i.e. 

 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑗 = [(80000 − ∑ (𝑊𝐵𝑟,𝑖)
12
𝑖=1 ) − ∑ (𝑊𝑒𝑓𝑓,𝑖)

12
𝑖=1 ] ∙ 0.2 ∙ 𝑎𝑣𝑔(𝑃𝑒𝑓𝑓,𝑡𝑖𝑒𝑟𝑠,𝑗) (48) 

 

The annual variable and fixed costs that come from water treatment (𝐶𝑉𝑗
0) for CASE 0 are only incurred 

by the WRF, i.e. 

 𝐶𝑉𝑗
0 = ∑ (𝑉𝑊𝑅𝐹(𝑊𝑒𝑓𝑓,𝑖 , 𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑒𝑓𝑓,𝑖))   
12
𝑖=1  (49) 

The variable cost function for the WRF is as follows [24]: 

 𝑉𝑊𝑅𝐹(𝑊,𝑃𝑃𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) =  𝐶𝐶𝑎𝑂 ∙ 𝐷𝐶𝑎𝑂 ∙ 𝑊 + 𝐶𝑁𝑎2𝐶𝑂3 ∙ 𝐷𝑁𝑎2𝐶𝑂3 ∙ 𝑊 + 6.719 ∙ 10−5 ∙ 𝑊 + 1.366 ∙ 106 +
5.851 ∙ 10−5 ∙ 𝑊   (50) 
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where 

 𝐷𝐶𝑎𝑂 = 0.00075 [
𝑃𝑃𝑀𝑚𝑎𝑔

[𝑃𝑃𝑀𝑚𝑎𝑔]
𝑜

+
[𝑃𝑃𝑀𝑐𝑎𝑙]

[𝑃𝑃𝑀𝑐𝑎𝑙]𝑜
] (51) 

 𝐷𝑁𝑎2𝐶𝑂3 = 0.0070
𝐷𝐶𝑎𝑂

(𝐷𝐶𝑎𝑂)𝑜
 (52) 

and 

• CCaO Cost of lime [$/lb]. (0.1 $/lb) 

• CNa2CO3 Cost of soda ash [$/lb]. (0.17 $/lb) 

• DCaO Dosage of lime [lb/gal]. 
• (DCaO)o Average lime dosage [lb/gal] (0.0015 lb/gal). 
• DNa2CO3 Dosage of soda ash [lb/gal]. 
• PPMmag Magnesium concentration [ppm]. 

• [PPMmag]o Average magnesium concentration [ppm] (142.1 ppm). 

• PPMcal  Calcium concentration [ppm]. 
• [PPMcal]o Average Calcium concentration [ppm] (187.5 ppm). 
• 1.366 ∙ 106 Fixed cost for one month [$]. 

 

The cost function 𝑉𝑊𝑅𝐹 assumes the following: 

• Principal chemical costs are for lime (CaO) and Soda Ash (Na2CO3) addition – relatively smaller 

chemical cost components (CO2, Acid, Hypochlorite, and Polyfloc) are assumed independent of 

hardness and are lumped together as a residual cost that is a function of volume treated. 

• Ca and Mg are the principal constituents for treatment. SiO2 and PO4 do not drive the lime and ash 

dosage. 

• Chemical usage is baselined to average dosage over the year 2017. 

• Chemical unit costs ($/lbm) are based on average 2017 values. 

• Manpower, contract services and labor, and maintenance materials are assumed a fixed cost and 

are based on 2017 actuals for WRF. 

The annual electricity costs that come from water treatment (𝐶𝐸𝑗
0) for CASE 0 are only incurred by the 

WRF. Note that the WRF is considered PVGS house-load and therefore the wholesale price of electricity 

(𝑃𝐸,𝑊) is considered, i.e.  

 𝐶𝐸𝑗
0 = ∑ (𝐸𝑊𝑅𝐹(𝑊𝑒𝑓𝑓,𝑖) ∙ 𝑃𝐸,𝑊)   12

𝑖=1  (53) 

The electricity consumption function for the WRF is as follows [24]: 

 𝐸𝑊𝑅𝐹(𝑊) =  714 + 1.8 ∙ 10−6 ∙ 𝑊  (54) 

The electricity consumption function 𝐸𝑊𝑅𝐹 assumes the following: 

• Power costs are based on off-site demands (Hassayampa Pump Station (HPS) and cathodic 

protection) and WRF on-site demands (house loads). 

• The on-site WRF power load is estimated to be 2.5 times the HPS loads at normal operating 

conditions with a baseload demand of 20% (lighting, etc.). 
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We can now consider the cash flow to APS from selling electricity produced by PVGS, which is: 

 𝑁𝑃𝑉 𝐸𝑙
𝐴𝑃𝑆

0 = ∑
(1−𝑇𝑎𝑥)

(1+𝑊𝐴𝐶𝐶𝑃𝑉)𝑗
𝐸𝑆𝐴𝑃𝑆 𝑃𝑉

𝑗

0𝐽
𝑗=1  (55) 

where 𝐸𝑆𝐴𝑃𝑆 𝑃𝑉
𝑗

 is the yearly total revenue of electricity sold by APS of their PVGS share. 

Given the level of the net demand there are 3 different possible situations. The time discretization for 

the net demand is hourly. First, the APS power available is computed by 

 𝑃𝑜𝑤𝐴𝑃𝑆𝑐𝑜𝑟 =  𝑃𝑜𝑤𝐴𝑃𝑆 −  𝑃𝑜𝑤𝐴𝑃𝑆% (𝐻𝑜𝑢𝑠𝑒𝐿𝑜𝑎𝑑 + 𝐸𝑊𝑅𝐹) (56) 

The three situations are then (evaluated for each hour): 

• 𝐸𝐷𝑁𝑒𝑡 ≥ 𝑃𝑜𝑤𝐴𝑃𝑆𝑐𝑜𝑟 ⟹ 𝐸𝑆𝐴𝑃𝑆 𝑃𝑉,𝑙𝑙
0 = 𝑃𝑜𝑤𝐴𝑃𝑆𝑐𝑜𝑟𝑟 ∙ 𝑃𝐸,𝑅 

• 0 ≤ 𝐸𝐷𝑁𝑒𝑡 < 𝑃𝑜𝑤𝐴𝑃𝑆𝑐𝑜𝑟 ⟹ 𝐸𝑆𝐴𝑃𝑆 𝑃𝑉,𝑙𝑙
0 = 𝐸𝐷𝑁𝑒𝑡 ∙ 𝑃𝐸,𝑅 + (𝑃𝑜𝑤𝐴𝑃𝑆𝑐𝑜𝑟 − 𝐸𝐷𝑁𝑒𝑡)𝑃𝐸,𝐻𝑢𝑏 

• 𝐸𝐷𝑁𝑒𝑡 ≤ 0 ⟹ 𝐸𝑆𝐴𝑃𝑆 𝑃𝑉,𝑙𝑙
0 =  𝑃𝑜𝑤𝐴𝑃𝑆𝑐𝑜𝑟 ∙ 𝑃𝐸,𝐻𝑢𝑏 

Once the electricity sold for each hour has been evaluated, these values can be summed to find the yearly 

electricity revenue. 

 𝐸𝑆𝐴𝑃𝑆 𝑃𝑉
𝑗

0 = ∑ 𝐸𝑆𝐴𝑃𝑆 𝑃𝑉,𝑙𝑙
08760

𝑙𝑙  (57) 

 

CASE 1 (brackish water acquisition and RO1) 

As for CASE 0, we start from the NPV decomposition to APS from water and electricity sold. 

 𝑁𝑃𝑉𝐴𝑃𝑆
1 = 𝑃𝑜𝑤𝐴𝑃𝑆% ⋅ 𝑁𝑃𝑉𝑊𝑎𝑡𝑒𝑟

𝐴𝑃𝑆

1 + 𝑁𝑃𝑉 𝐸𝑙
𝐴𝑃𝑆

1  (58) 

First, we evaluate the portion coming from the water: 

 𝑁𝑃𝑉𝑊𝑎𝑡𝑒𝑟
𝐴𝑃𝑆

1 = ∑ {
(1−𝑇𝑎𝑥)(−𝐶𝑉𝑗,𝑊𝑅𝐹

1 −𝐶𝐸𝑗,𝑊𝑅𝐹
1 )

(1+𝑊𝐴𝐶𝐶𝑃𝑉)𝑗
}𝐽

𝑗=1 + ∑ {
(1−𝑇𝑎𝑥)(−𝐶𝑉𝑗,𝑅𝑂1

1 −𝐶𝐸𝑗,𝑅𝑂1
1 −𝐶𝐹𝑗,𝑅𝑂1

1 )

(1+𝑊𝐴𝐶𝐶𝑃𝑉)𝑗
}𝐽

𝑗=1 +

∑ {
(1−𝑇𝑎𝑥)(−𝐶𝑉𝑗,𝑃𝑢𝑚𝑝

1 −𝐶𝐸𝑗,𝑃𝑢𝑚𝑝
1 −𝐶𝐹𝑗,𝑃𝑢𝑚𝑝

1 )

(1+𝑊𝐴𝐶𝐶𝑃𝑉)𝑗
}𝐽

𝑗=1 + ∑ {
𝑇𝑎𝑥(𝐷𝑗𝐶𝐴𝑃𝐸𝑋𝑅𝑂1

1 𝐶𝑅𝑂1
1 +𝐷𝑗𝐶𝐴𝑃𝐸𝑋𝑃𝑢𝑚𝑝𝐶𝑃𝑢𝑚𝑝)

(1+𝑊𝐴𝐶𝐶𝑃𝑉)𝑗
}𝐽

𝑗=1 −

𝐶𝐴𝑃𝐸𝑋𝑅𝑂1
1 𝐶𝑅𝑂1

1 − 𝐶𝐴𝑃𝐸𝑋𝑃𝑢𝑚𝑝𝐶𝑃𝑢𝑚𝑝 + ∑ {
(1−𝑇𝑎𝑥)(−𝐶𝑊𝑗,𝐵𝑟

1 −𝐶𝑊𝑗,𝑒𝑓𝑓
1 )

(1+𝑊𝐴𝐶𝐶𝑃𝑉)𝑗
}𝐽

𝑗=1  (59) 

where, 

For the WRF: 

• 𝐶𝑉𝑗,𝑊𝑅𝐹
1  WRF annual costs from variable sources (excluded electricity and water). This 

quantity is computed the same way as for CASE 0 (see Eq. 49). 

• 𝐶𝐸𝑗,𝑊𝑅𝐹
1  WRF annual costs from electricity consumption. This quantity is computed the same 

way as for CASE 0 (see Eq. 53). 

For the RO1 [25]: 

• 𝐶𝑉𝑗,𝑅𝑂1
1  RO1 annual costs from variable sources (excluded electricity and water).  

• 𝐶𝐹𝑗,𝑅𝑂1
1  RO1 annual costs from fixed sources. 𝐶𝑉𝑗,𝑅𝑂1

1 + 𝐶𝐹𝑗,𝑅𝑂1
1  is assumed to be 1% of the 

capex. 
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• 𝐶𝐸𝑗,𝑅𝑂1
1  RO1 annual costs from electricity consumption. The amount of electricity used by 

the RO1 (𝐸𝑗,𝑊𝑅𝐹
1 ) is provided by the RO1 model (see Section 3.1.1). The cost is then 

computed by 𝐶𝐸𝑗,𝑊𝑅𝐹
1 = 𝐸𝑗,𝑊𝑅𝐹

1 ∙ 𝑃𝐸,𝑅 . Note that RO1 is not considered PVGS 

house load and consequently the retail price of electricity is applied (𝑃𝐸,𝑅). 

For the brackish water pump [26]: 

• 𝐶𝑉𝑗,𝑃𝑢𝑚𝑝
1  Brackish water pump annual costs from variable sources (excluded electricity).  

• 𝐶𝐹𝑗,𝑃𝑢𝑚𝑝
1  Brackish water pump annual costs from fixed sources. 𝐶𝑉𝑗,𝑃𝑢𝑚𝑝

1 + 𝐶𝐹𝑗,𝑃𝑢𝑚𝑝
1  is 

assumed to be 2000 $/month independent of the pump size. 

• 𝐶𝐸𝑗,𝑃𝑢𝑚𝑝
1  Brackish water pump annual costs from electricity consumption. The amount of 

electricity used by the brackish water pump (𝐸𝑗,𝑃𝑢𝑚𝑝
1 ) is proportional to the reference 

that pumping 400 acre-foot need 136500 kWh of power. The cost is then computed 

by 𝐶𝐸𝑗,𝑃𝑢𝑚𝑝
1 = 𝐸𝑗,𝑃𝑢𝑚𝑝

1 ∙ 𝑃𝐸,𝑅. Note that the pump is not considered PVGS house 

load and consequently the retail price of electricity is applied (𝑃𝐸,𝑅). 

Water acquisition cost: 

• 𝐶𝑊𝑗,𝑒𝑓𝑓
1  Total annual costs from effluent water acquisition. This quantity is computed the same 

way as for CASE 0 (see Eq. 47). 

• 𝐶𝑊𝑗,𝐵𝑟
1  Total annual costs from brackish water acquisition. This is 𝐶𝑊𝑗,𝐵𝑟

1 = ∑ 𝑊𝐵𝑟,𝑖 ∙ 𝑃𝐵𝑟
12
𝑖 . 

 

For the component of the NPV that arises from APS electricity sales two factors need to be accounted 

for: 

• The electricity to APS disposal is decreased/increased by 𝑃𝑜𝑤𝐴𝑃𝑆% times the variation of 

electricity consumption at the WRF. 

• The baseload is increased by the amount of electricity used by RO1. 

 NPV El
APS

1 = ∑
(1−Tax)

(1+WACCPV)j
ESAPS PV

j

1J
j=1  (60) 

The electricity revenue is computed in the same way as for CASE 0. First, the power available to APS 

is decreased by 𝑃𝑜𝑤𝐴𝑃𝑆% of the electricity used in the WRF and the house load. Second, the net demand 

is raised by the additional electricity use associated with the RO plant and the brackish water pump (since 

not considered PVGS house load). The equations analogue to CASE 0 are: 

 

 𝑃𝑜𝑤𝐴𝑃𝑆𝑐𝑜𝑟
1 =  𝑃𝑜𝑤𝐴𝑃𝑆 −  𝑃𝑜𝑤𝐴𝑃𝑆% (𝐻𝑜𝑢𝑠𝑒𝐿𝑜𝑎𝑑 + 𝐸𝑊𝑅𝐹

1 ) (61) 

 𝐸𝐷𝑁𝑒𝑡,𝑐𝑜𝑟
1 = 𝐸𝐷𝑁𝑒𝑡 + 𝐸𝑅𝑂1

1 + 𝐸𝑃𝑢𝑚𝑝
1  (62) 

 

The three situations are then evaluated for each hour: 

• 𝐸𝐷𝑁𝑒𝑡,𝑐𝑜𝑟 ≥ 𝑃𝑜𝑤𝐴𝑃𝑆𝑐𝑜𝑟 ⟹ 𝐸𝑆𝐴𝑃𝑆 𝑃𝑉,𝑙𝑙
1 = 𝑃𝑜𝑤𝐴𝑃𝑆𝑐𝑜𝑟

1 ∙ 𝑃𝐸,𝑅 

• 0 ≤ 𝐸𝐷𝑁𝑒𝑡,𝑐𝑜𝑟 < 𝑃𝑜𝑤𝐴𝑃𝑆𝑐𝑜𝑟 ⟹ 𝐸𝑆𝐴𝑃𝑆 𝑃𝑉,𝑙𝑙
1 = 𝐸𝐷𝑁𝑒𝑡,𝑐𝑜𝑟 ∙ 𝑃𝐸,𝑅 + (𝑃𝑜𝑤𝐴𝑃𝑆𝑐𝑜𝑟

1 −

𝐸𝐷𝑁𝑒𝑡,𝑐𝑜𝑟)𝑃𝐸,𝐻𝑢𝑏 

• 𝐸𝐷𝑁𝑒𝑡,𝑐𝑜𝑟 ≤ 0 ⟹ 𝐸𝑆𝐴𝑃𝑆 𝑃𝑉,𝑙𝑙
1 = 𝑃𝑜𝑤𝐴𝑃𝑆𝑐𝑜𝑟

1 ∙ 𝑃𝐸,𝐻𝑢𝑏 

Once the electricity sold for each hour is evaluated, it can be summed to find the yearly electricity revenue: 

 𝐸𝑆𝐴𝑃𝑆 𝑃𝑉
𝑗

1 = ∑ 𝐸𝑆𝐴𝑃𝑆 𝑃𝑉,𝑙𝑙
18760

𝑙𝑙  (63) 
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CASE 2 (RO2 for potable water from brackish and RO1 for clean PVGS cooling water) 

For CASE 2, we assume that the potable water plant is owned solely by APS. This situation introduces 

two new cash flows, one is the revenue generated from RO2 directly to APS and the second arises from an 

increase in the operational costs at PVGS WRF and RO1 that needs to be compensated by APS.  

Rather than calculating the NPV, which requires knowledge of the price at which the potable water is 

sold, this case computes an LCOW, i.e. the water price that will compensate the difference in cost APS is 

seeing compared to CASE 0, in which no ROs are built: 

 0 = 𝑁𝑃𝑉 𝐸𝑙
𝐴𝑃𝑆

2 − 𝑁𝑃𝑉 𝐸𝑙
𝐴𝑃𝑆

0 + 𝑁𝑃𝑉𝑊𝑎𝑡𝑒𝑟
𝐴𝑃𝑆

2 − 𝑁𝑃𝑉𝑊𝑎𝑡𝑒𝑟
𝐴𝑃𝑆

0 + ∑
(1−𝑇𝑎𝑥)

(1+𝑊𝐴𝐶𝐶𝑃𝑉)𝑗
{𝑊𝑅𝑂2

𝑂𝑈𝑇
,𝑗

∙ 𝐿𝐶𝑂𝑊}𝐽
𝑗=1  (64) 

 

First, we evaluate the portion coming from the water (except the revenue from potable water sales): 

 𝑁𝑃𝑉𝑊𝑎𝑡𝑒𝑟
𝐴𝑃𝑆

2 = ∑ {
(1−𝑇𝑎𝑥)(−𝐶𝑉𝑗,𝑊𝑅𝐹

2 −𝐶𝐸𝑗,𝑊𝑅𝐹
2 )

(1+𝑊𝐴𝐶𝐶𝑃𝑉)𝑗
}𝐽

𝑗=1 + ∑ {
(1−𝑇𝑎𝑥)(−𝐶𝑉𝑗,𝑅𝑂1

2 −𝐶𝐸𝑗,𝑅𝑂1
2 −𝐶𝐹𝑗,𝑅𝑂1

2 )

(1+𝑊𝐴𝐶𝐶𝑃𝑉)𝑗
}𝐽

𝑗=1 +

∑ {
(1−𝑇𝑎𝑥)(−𝐶𝑉𝑗,𝑅𝑂2

2 −𝐶𝐸𝑗,𝑅𝑂2
2 −𝐶𝐹𝑗,𝑅𝑂2

2 )

(1+𝑊𝐴𝐶𝐶𝑃𝑉)𝑗
}𝐽

𝑗=1 + ∑ {
(1−𝑇𝑎𝑥)(−𝐶𝑉𝑗,𝑃𝑢𝑚𝑝

2 −𝐶𝐸𝑗,𝑃𝑢𝑚𝑝
2 −𝐶𝐹𝑗,𝑃𝑢𝑚𝑝

2 )

(1+𝑊𝐴𝐶𝐶𝑃𝑉)𝑗
}𝐽

𝑗=1 +

∑ {
𝑇𝑎𝑥(𝐷𝑗𝐶𝐴𝑃𝐸𝑋𝑅𝑂1

2 𝐶𝑅𝑂1
2 +𝐷𝑗𝐶𝐴𝑃𝐸𝑋𝑅𝑂2

2 𝐶𝑅𝑂2
2 +𝐷𝑗𝐶𝐴𝑃𝐸𝑋𝑃𝑢𝑚𝑝𝐶𝑃𝑢𝑚𝑝)

(1+𝑊𝐴𝐶𝐶𝑃𝑉)𝑗
}𝐽

𝑗=1 − 𝐶𝐴𝑃𝐸𝑋𝑅𝑂1
2 𝐶𝑅𝑂1

2 − 𝐶𝐴𝑃𝐸𝑋𝑅𝑂2
2 𝐶𝑅𝑂2

2 −

𝐶𝐴𝑃𝐸𝑋𝑃𝑢𝑚𝑝𝐶𝑃𝑢𝑚𝑝 + ∑ {
(1−𝑇𝑎𝑥)(−𝐶𝑊𝑗,𝐵𝑟

2 −𝐶𝑊𝑗,𝑒𝑓𝑓
2 )

(1+𝑊𝐴𝐶𝐶𝑃𝑉)𝑗
}𝐽

𝑗=1  (65) 

where, 

For the WRF: 

• 𝐶𝑉𝑗,𝑊𝑅𝐹
2  WRF annual costs from variable sources (excluded electricity and water). This 

quantity is computed the same way as for CASE 0 (see Eq. 49). 

• 𝐶𝐸𝑗,𝑊𝑅𝐹
2  WRF annual costs from electricity consumption. This quantity is computed the same 

way as for CASE 0 (see Eq. 53). 

For the RO1: 

• 𝐶𝑉𝑗,𝑅𝑂1
2  RO1 annual costs from variable sources (excluded electricity and water).  

• 𝐶𝐹𝑗,𝑅𝑂1
2  RO1 annual costs from fixed sources. 𝐶𝑉𝑗,𝑅𝑂1

2 + 𝐶𝐹𝑗,𝑅𝑂1
2  is assumed to be 1% of the 

capex. 

• 𝐶𝐸𝑗,𝑅𝑂1
2  RO1 annual costs from electricity consumption. The amount of electricity used by 

the RO1 (𝐸𝑗,𝑊𝑅𝐹
2 ) is provided by the RO1 model (see Section 3.1.1). The cost is then 

computed by 𝐶𝐸𝑗,𝑊𝑅𝐹
2 = 𝐸𝑗,𝑊𝑅𝐹

2 ∙ 𝑃𝐸,𝑅 . Note that RO1 is not considered PVGS 

house load and consequently the retail price of electricity is applied (𝑃𝐸,𝑅). 

For the RO2: 

• 𝐶𝑉𝑗,𝑅𝑂2
2  RO2 annual costs from variable sources (excluded electricity and water).  

• 𝐶𝐹𝑗,𝑅𝑂2
2  RO2 annual costs from fixed sources. 𝐶𝑉𝑗,𝑅𝑂2

2 + 𝐶𝐹𝑗,𝑅𝑂2
2  is assumed to be 1% of the 

capex. 

• 𝐶𝐸𝑗,𝑅𝑂2
2  RO2 annual costs from electricity consumption. The amount of electricity used by 

the RO2 (𝐸𝑗,𝑊𝑅𝐹
2 ) is provided by the RO2 model (see Section 3.1.1). The cost is then 

computed by 𝐶𝐸𝑗,𝑊𝑅𝐹
2 = 𝐸𝑗,𝑊𝑅𝐹

2 ∙ 𝑃𝐸,𝑅 . Note that RO2 is not considered PVGS 

house load and consequently the retail price of electricity is applied (𝑃𝐸,𝑅). 
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For the brackish water pump: 

• 𝐶𝑉𝑗,𝑃𝑢𝑚𝑝
2  Brackish water pump annual costs from variable sources (excluded electricity).  

• 𝐶𝐹𝑗,𝑃𝑢𝑚𝑝
2  Brackish water pump annual costs from fixed sources. 𝐶𝑉𝑗,𝑃𝑢𝑚𝑝

2 + 𝐶𝐹𝑗,𝑃𝑢𝑚𝑝
2  is 

assumed to be 2000 $/month independent of the pump size. 

• 𝐶𝐸𝑗,𝑃𝑢𝑚𝑝
2  Brackish water pump annual costs from electricity consumption. The amount of 

electricity used by the brackish water pump (𝐸𝑗,𝑃𝑢𝑚𝑝
2 ) is proportional to the reference 

that pumping 400 acre-foot need 136500 kWh of power. The cost is then computed 

by 𝐶𝐸𝑗,𝑃𝑢𝑚𝑝
2 = 𝐸𝑗,𝑃𝑢𝑚𝑝

2 ∙ 𝑃𝐸,𝑅. Note that the pump is not considered PVGS house 

load and consequently the retail price of electricity is applied (𝑃𝐸,𝑅). 

Water acquisition cost: 

• 𝐶𝑊𝑗,𝑒𝑓𝑓
2  Total annual costs from effluent water acquisition. This quantity is computed the 

same way as for CASE 0 (see Eq. 47). 

• 𝐶𝑊𝑗,𝐵𝑟
2  Total annual costs from brackish water acquisition. This is 

𝐶𝑊𝑗,𝐵𝑟
2 = ∑ 𝑊𝐵𝑟,𝑖 ∙ 𝑃𝐵𝑟

12
𝑖 . 

 

For the component of the NPV that arises from APS electricity two factors need to be accounted for: 

• The electricity that APS is able sell from its PVGS’s share is decreased/increased by 𝑃𝑜𝑤𝐴𝑃𝑆% 

times the variation of electricity consumption at the WRF. 

• The baseload is increased by the amount of electricity used by RO1. 

 𝑁𝑃𝑉 𝐸𝑙
𝐴𝑃𝑆

2 = ∑
(1−𝑇𝑎𝑥)

(1+𝑊𝐴𝐶𝐶𝑃𝑉)𝑗
𝐸𝑆𝐴𝑃𝑆 𝑃𝑉

𝑗

2𝐽
𝑗=1  (66) 

The electric revenue is computed in the same way as for CASE 0. First, the power available to APS is 

decreased by 𝑃𝑜𝑤𝐴𝑃𝑆% of the electricity used in the WRF and the house load. Second, the net demand is 

increased by the additional electricity usage of the RO plants and the brackish water pump (not 

considered PVGS house load). The equations analogous to CASE 0 are: 

 𝑃𝑜𝑤𝐴𝑃𝑆𝑐𝑜𝑟
2 =  𝑃𝑜𝑤𝐴𝑃𝑆 −  𝑃𝑜𝑤𝐴𝑃𝑆% (𝐻𝑜𝑢𝑠𝑒𝐿𝑜𝑎𝑑 + 𝐸𝑊𝑅𝐹

2 ) (67) 

 𝐸𝐷𝑁𝑒𝑡,𝑐𝑜𝑟
2 = 𝐸𝐷𝑁𝑒𝑡 + 𝐸𝑅𝑂1

2 + 𝐸𝑅𝑂2
2 + 𝐸𝑃𝑢𝑚𝑝

1  (68) 

 

The three situations are then evaluated for each hour: 

• 𝐸𝐷𝑁𝑒𝑡,𝑐𝑜𝑟 ≥ 𝑃𝑜𝑤𝐴𝑃𝑆𝑐𝑜𝑟 ⟹ 𝐸𝑆𝐴𝑃𝑆 𝑃𝑉,𝑙𝑙
2 = 𝑃𝑜𝑤𝐴𝑃𝑆𝑐𝑜𝑟

2 ∙ 𝑃𝐸,𝑅 

• 0 ≤ 𝐸𝐷𝑁𝑒𝑡,𝑐𝑜𝑟 < 𝑃𝑜𝑤𝐴𝑃𝑆𝑐𝑜𝑟 ⟹ 𝐸𝑆𝐴𝑃𝑆 𝑃𝑉,𝑙𝑙
2 = 𝐸𝐷𝑁𝑒𝑡,𝑐𝑜𝑟 ∙ 𝑃𝐸,𝑅 + (𝑃𝑜𝑤𝐴𝑃𝑆𝑐𝑜𝑟

2 −

𝐸𝐷𝑁𝑒𝑡,𝑐𝑜𝑟)𝑃𝐸,𝐻𝑢𝑏 

• 𝐸𝐷𝑁𝑒𝑡,𝑐𝑜𝑟 ≤ 0 ⟹ 𝐸𝑆𝐴𝑃𝑆 𝑃𝑉,𝑙𝑙
2 = 𝑃𝑜𝑤𝐴𝑃𝑆𝑐𝑜𝑟

2 ∙ 𝑃𝐸,𝐻𝑢𝑏 

Once the electricity sold for each hour has been evaluated, it can be summed to find the yearly electricity 

revenue. 

 𝐸𝑆𝐴𝑃𝑆 𝑃𝑉
𝑗

2 = ∑ 𝐸𝑆𝐴𝑃𝑆 𝑃𝑉,𝑙𝑙
28760

𝑙𝑙  (69) 
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4. SIMULATIONS 

This chapter presents the results of the economic analysis for the APS cases introduced in the previous 

chapters. First, the input data and assumptions are discussed. After that, in the second section of this chapter, 

the results of the analysis including the sensitivity studies performed for selected inputs are presented and 

discussed. 

 

4.1 Input data and assumptions 

As mentioned, this section presents the model inputs. The assumptions made in the physical modeling 

(water flows and chemical compositions) as well as in the cash flows have already been discussed in Section 

3.2. This section first discusses the model inputs that are assumed not to have a stochastic nature. After that, 

in a second section, the inputs that are assumed to have a stochastic nature are presented. 

4.1.1 Non-stochastic input data 

This first section presents the inputs that are assumed to be non-stochastic, i.e. ‘fixed values’. These 

values include the inputs presented in Table 6 as well as the economic parameters such as tax, inflation rate, 

etc. Inputs that have a corresponding sensitivity study performed are indicated with the ‘reference value’ 

colored in red [22-32]. 

NumberOfYears J  [years] 27, 47 

PowAPS 𝑃𝑜𝑤𝐴𝑃𝑆 [MW] 1130 

PowAPSPercent 𝑃𝑜𝑤𝐴𝑃𝑆% [%] 29.1 

EL_wholesale_price 𝑃𝐸,𝑊 [$/MWh] 30.0, 35.0, 40.0 

EL_RetWholeDiff 𝑃𝐸,𝑑𝑖𝑓𝑓  [$/MWh] 10.0 

This is the difference between wholesale and retail price, i.e. 

𝑃𝐸,𝑅= 𝑃𝐸,𝑊 + 𝑃𝐸,𝑑𝑖𝑓𝑓  

HouseLoad HouseLoad [MW] 66.0 

Blowdown 𝐵𝑙𝑜𝑤𝐷 [%] 5.0 

PBrackish 𝑃𝐵𝑟 [$/acre-foot] 25.0 

PEffluent 𝑃𝑒𝑓𝑓  [$/acre-foot] The effluent water price 

structure is a multi-tier structure where water becomes more expensive as 

more water is purchased. In addition, the water becomes more expensive 

from year to year. 

W_brackish 𝑊𝐵𝑟 [kg/month] 493392742.0 (400 AF/month), 

1480178226.0 (1200 AF/month), 2960356452.0 (2400 AF/month), 

4933900000.0 (4000 AF/month) 

No variation during the year has been considered, i.e. the same amount of 

brackish water is purchased every month. 

Chem_cal_brackish 𝑃𝑃𝑀𝐵𝑟,𝑐𝑎𝑙 [ppm] 180.0 

Chem_mag_brackish 𝑃𝑃𝑀𝐵𝑟,𝑚𝑎𝑔 [ppm] 80.0 

Chem_sod_brackish 𝑃𝑃𝑀𝐵𝑟,𝑠𝑜𝑑 [ppm] 780.0 

Chem_alk_brackish 𝑃𝑃𝑀𝐵𝑟,𝑎𝑙𝑘 [ppm as CaCO3] 244.0 
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Chem_clo_brackish 𝑃𝑃𝑀𝐵𝑟,𝑐𝑙𝑜 [ppm] 799.0 

Chem_sul_brackish 𝑃𝑃𝑀𝐵𝑟,𝑠𝑢𝑙 [ppm as SO4] 1180.0 

limit_clo_ppm 𝑃𝑃𝑀𝑃𝑉,𝑚𝑎𝑥 [ppm] 450.0, 500.0 

Cooling3 𝑊𝑃𝑉 [kg/month] 6712122441.70,  

6201290803.93, 7060244743.00, 5004499622.53, 

8168938593.87, 8460301824.30, 8728961426.39,  

8653282665.24, 7994877443.22, 5072610507.56,  

7018621424.36, 6859696025.94 

 

Chem_cal_eff3  𝑃𝑃𝑀𝑒𝑓𝑓,𝑐𝑎𝑙 [ppm as CaCO3] 194.0, 222.0, 175.3, 193.3, 

181.2, 165.5, 187.0, 157.8, 198.8, 190.7, 188.5, 196.8 

Chem_mag_eff3  𝑃𝑃𝑀𝑒𝑓𝑓,𝑚𝑎𝑔 [ppm as CaCO3] 140.0, 154.0, 139.5, 135.7, 

132.4, 139.3, 150.8, 141.8, 143.0, 139.3, 146.0, 142.8 

Chem_sod_eff3 𝑃𝑃𝑀𝑒𝑓𝑓,𝑠𝑜𝑑 [ppm] 264.0, 250.0, 215.0, 250.0, 

297.0, 293.5, 383.7, 258.0, 284.5, 229.3, 182.3, 244.5 

Chem_alk_eff3 𝑃𝑃𝑀𝑒𝑓𝑓,𝑎𝑙𝑘 [ppm as CaCO3] 163.0, 175.0, 169.3, 160.0, 

154.4, 164.0, 161.0, 151.4, 153.5, 159.7, 169.5, 166.5 

Chem_clo_eff3 𝑃𝑃𝑀𝑒𝑓𝑓,𝑐𝑙𝑜 [ppm] 301.0, 345.0, 292.5, 292.5, 

359.0, 445.5, 477.0, 448.8, 471.0, 353.7, 168.0, 286.0 

Chem_sul_eff3 𝑃𝑃𝑀𝑒𝑓𝑓,𝑠𝑢𝑙 [ppm] 215.0, 248.0, 186.5, 186.5, 

167.0, 191.5, 185.8, 195.0, 177.8, 164.0, 159.0, 183.5 

Forecast N/A [option select] See Section 3.2.3.Two different 

rPV and demand growth models have been considered. One where the 

demand scales exponentially with 3.3% while the rPV grows linearly 

adding 200 MW/year. The second model considerers that both, the demand 

and rPV grow exponentially 3.3% per year. 

DiscoutRate 𝑊𝐴𝐶𝐶𝑃𝑉 = 𝑊𝐴𝐶𝐶𝐴𝑃𝑆  [%] 5, 10, 15 

Inflation 𝐼𝑛𝑓 [%] 3 

Tax 𝑇𝑎𝑥 [%] 21.0 

Depreciation 𝐷𝑗  [%] A 15 years MACRS accelerated 

depreciation table is used for the RO plants while a 7 year MACRS is used 

for the brackish water pump. 

CAPEX RO 𝐶𝐴𝑃𝐸𝑋𝑅𝑂𝑥 [$/(kg/s)] 64800.0 

Economy RO 𝑋 [-] 1.0 

This is the economy of scale factor (See Eq. 12) for the ROs. A factor of 1.0 

means there is no economy and no dis-economy of scale, i.e. an RO with 

double the capacity will cost double. 

CAPEX Pump 𝐶𝐴𝑃𝐸𝑋𝑃𝑢𝑚𝑝 [$/(kg/s)] 2105.3 

                                                      
3 Note that these values are not a sensitivity study, but reflect the change during the year. 
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Economy Pump 𝑋 [-] 1.0 

This is the economy of scale factor (See Eq. 12) for the brackish water pump. 

A factor of 1.0 means there is no economy and no dis-economy of scale, i.e. 

a pump with double the capacity will cost double. 

 

4.1.2 Stochastic input data 

In addition to the non-stochastic inputs, the APS problem also has some inputs that are stochastic, 

namely the hourly rPV production, the raw APS demand and the PV Hub price. Traditionally, to analyze 

such a system, one would use historical data only. To remove this limitation, the capability of the N-R HES 

framework to generate stochastic time series (FVARMA) can be used. The model is used to create from 

limited databases of time histories an unlimited number of representative time histories that are never 

exactly the same as, but are statistically similar to, the time histories in the databases. The unlimited source 

of time histories can then be used to perform statistical analysis of the economic performance of the model. 

The advantage of using such systemic histories is that with historic data only the system can only be 

analyzed for that exact data, while averaging over multiple synthetic histories will lead to an analysis for 

the average of future possible behaviors. It should be noted that the FVARMA reproduces the stochasticity 

of the data to be applied to future data, but does not include any growth/inflation projections, i.e. the 

FVARMA produces an unlimited amount of “today’s” data. 

The detailed functioning of the FVARMA is explained in [19, 20] and Section 3.1.3, but its functioning 

is summarized here briefly. First, the training data is de-trended with a set of Fourier frequencies that the 

user can choose. This is used to capture and remove seasonal, weekly and daily (day/night) trends in the 

data. The residual data after the de-trending is assumed to contain only the stochastic noise. This noise is 

normalized and the VARMA portion of the algorithm is used to model it. The user can input the 

autocorrelation length parameters “P” and “Q” for the VARMA model. Once the FVARMA model is 

trained, an unlimited number of synthetic data series can be generated. 

Having multiple stochastic data, such as electricity price and demand or renewable generation, intuition 

tells us that there might be correlations between these data not only in the longer trends, but also in the 

stochastic portion of the data. The correlation of the data in the general trends is captured by the Fourier, 

e.g. the correlation that demand and solar production are both low at night is captured by the individual 

Fourier de-trending for the two data. In addition to these correlated trends, there are also correlated 

stochastic events, like a hot day in summer where solar production spikes and at the same time (air 

conditioning) demand also spikes. This type of stochastic correlation is not captured by the ARMA 

algorithm. To try to capture this, the recently developed correlated Vector ARMA (FVARMA, see Section 

3.1.3) has been used for the data in this study. 

Model inputs 

Demand and rPV generation datasets from APS were used for training [28-30, 32, 33]. The demand 

dataset is historical data from 2016 with an hourly resolution. The rPV generation, also an hourly resolution, 

corresponds to 12 different days, a representative day for each month, ordered and repeated to make up one 

year. The datasets are representative of 2016, a leap year, and therefore have 8784 hours in total. The model 

developed can run on either 8784-hour or standard 8760-hour sets. Finally, hourly PV Hub price data for 

2016 downloaded from [33] has been used. 

FVARMA Training and Sampling 

In all cases, input data is passed into RAVEN to train a FVARMA which is then saved for later 

sampling. Several different FVARMA analyses are presented here. The first configuration trains separate 

FVARMA models for the demand and the rPV generation. The second uses a single FVARMA to 

investigate the correlation between the rPV generation and demand. The third case is also a correlated, but 
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rather than training the FVARMA over the entire year, six separate correlated FVARMAs are trained (2 

months each). The analysis has shown that (see later in this section) training over the entire year leads to 

an average variance that does not reproduce the seasons well, i.e. has a too large of a variance in the winter 

months and a too small of a variance for the summer months. For the subsequent APS case analysis, the 

correlated FVARMA is split in 2 month blocks that correlate demand and the rPV is used. In addition, the 

PV Hub price is also sampled by the FVARMA.  

All the FVARMAs analyzed utilize a filter that disregards the rPV zero generation periods in correlation 

so that they do not affect the demand values. After the FVARMA models are trained, RAVEN samples 

each of them, creating the synthetic demand and solar generation data. The synthetic data is then passed by 

RAVEN to a linked external model (“ARMA PostP” in Figure 16), where it is scaled and combined to form 

a net demand profile. 

Uncorrelated demand and rPV analysis 

The FVARMA input parameters used in this case are as follows: The Fourier series are calculated for 

1 year, 30 days, 1 day, and 3 hours for both FVARMAs. The correlation length for the FVARMA is set to 

2 hours and the out truncation is set to positive, forcing the FVARMA to output non-negative values for 

demand and rPV. 

The synthetic demand data output by the FVARMA model was verified to be statistically similar to the 

input data. Table 7 displays the average and standard deviations, as compared to the original demand data. 

Figure 17 shows the outputs from the FVARMA model, sampled 50 different times. Three representative 

days in June are plotted, showing that the FVARMA can create synthetic data with relative accuracy. 

 

 

Table 7: Statistical properties of training and synthetic demand. 
 

Real 

Demand 

Synthetic 

Demand 

% 

Difference 

Average 3490.3 3488.2 0.1% 

Standard 

Deviation 

1011.3 1001.3 1.0% 
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Figure 17: Synthetic demand and input demand over three representative days. 

 

On the other hand, the synthetic rPV data is not as statistically similar to its training data because the 

FVARMA algorithm has difficulty with long periods of the same value, such as when the generation is 

zero at night (no periodicity). When the model is sampled, the output has significant solar generation in 

the nighttime hours. This is illustrated in Figure 18, where the input generation profile is zero but the 

majority of the 50 synthetic generation profiles have generation at night. To remedy this, the rPV 

generation profile was post-processed to ensure generation is only available in the same hours as the input 

generation data. The smoothing is also displayed in Figure 18. This results in the slight over estimation of 

rPV generation. 

 

Figure 18: rPV actual generation vs. synthetic generation over three representative days. The plot on the 

left is direct output from the FVARMA model. The plot on the right is with postprocessing to ensure that 

the generation is zero at night. 

 



 

 41 

A statistical comparison of the input data, synthetic data, and synthetic data with post processing is 

shown in Table 8. The synthetic generation average and standard deviation have 1.1% and 3.7% error, 

respectively. 

 

Table 8: Statistical properties for training, synthetic, and smoothed rPV Generation. 
 

Real rPV 

Generation 

Synthetic 

rPV 

Generation 

Synthetic rPV 

Generation with 

Smoothing 

Average 152.9 154.6 149.7 

Standard 

Deviation 

204.8 197.6 194.8 

 

Correlated demand and rPV (with rPV Generation Adjustment) analysis 

The correlated FVARMA parameters are similar, but designating the rPV production in the zeroFilter 

node tells the FVARMA not to correlate the datasets when production is zero. In those instances, only the 

demand FVARMA is trained and the rPV generation will be set to zero. The correlated with zeroFilter 

inputs are as follows: The Fourier series are calculated for 1 year, 3 months, 30 days, 1 day, and 3 hours for 

both FVARMAs. The correlation length for the FVARMA is set to 6 hours and the out truncation is set to 

positive, forcing the FVARMA to output non-negative values for demand and rPV. 

Because the correlated FVARMA has issues with zero generation at night, a processor was developed 

to correlate the demand and rPV generation only at times of rPV generation. Table 9 and Table 10 show 

the statistical characteristics of the synthetic data from correlated FVARMA. The model was sampled 50 

times; three representative days in June are plotted in Figure 19. 

 

 

Table 9: Statistical properties of training data and synthetic demand for correlated FVARMA with 

adjustment. 
 

Real 

Demand 

Synthetic 

Demand 

% 

Difference 

Average 3490.3 3136.4 11.3% 

Standard 

Deviation 

1011.3 831.2 21.7% 
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Table 10: Statistical properties for real and synthetic rPV Generation for correlated FVARMA with 

adjustment. 
 

Real rPV 

Generation 

Synthetic 

rPV 

Generation 

% 

Difference 

Average 152.9 137.5 11.1% 

Standard 

Deviation 

204.8 182.1 16.0% 

 

 

Figure 19: Output of correlated FVARMA with adjustment for demand and rPV for three representative 

days. 

 

“Correlated FVARMA Split” used for APS analysis 

When training the FVARMA over one year, the model would miss some of the features on shorter time 

horizons. For example, the variance was high in the winter months because the model had trained over the 

whole year, including the summer peak. To remedy this, the dataset was split into 6 equal length time series 

and an individual FVARMA was trained for each of these two-month sections. The synthetic data output 

from each FVARMA was reassembled into a one-year time series. Figure 20 compares the results from the 

single, one-year FVARMA and the six, two-month FVARMAs. The split FVARMA case leads to much 

better matching of the winter months with a lower overall variance. Additionally, a 3-day representative 

period in June is plotted with data from the split FVARMAs (Figure 21). The data agrees better than the 

single FVARMA method in the above Section. Furthermore, to investigate the variance in the data, 10000 

synthetic histories were produced for demand, rPV and hub price. That leads to a statistical error of 

1 √10000 =⁄ 1%. The means and variances are presented in Figure 22 (demand), Figure 23 (rPV) and 

Figure 24 (hub price). The 6 distinct variance regions for the split FVARMA can clearly be seen for the 

demand and hub price. This result confirms that using the yearly average variance is less accurate than the 

split. For the rPV, however, the reason why mean and variance are “solid blocks” rather than lines is that 

during the night hours the mean and variance is always zero. 
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Figure 20: One-year synthetic demand vs actual demand. The plot on the left is data sampled from the one-

year FVARMA and the right is data sampled from the six, two-month FVARMAs. 

 

 

 

 

Figure 21: Output of two-month correlated FVARMA with zeroFilter demand and rPV for three 

representative days. 
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Figure 22: Results of 104 runs: Mean and variance for synthetic demand. 

 

 

Figure 23: Results of 104 runs: Mean and variance for synthetic rPV production. 

 

 

Figure 24: Results for 104 runs: Mean and variance for synthetic hub price production. 
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Thus far we have confirmed that the FVARMA prediction ability to produce each data separately is 

statistically meaningful. The next section discusses how we can also capture the stochastic (short term) 

correlation between demand and rPV or demand and hub price. 

Figure 25 shows a 2-week period of demand and rPV data, including both the input training data and 

several synthetic histories. Two cases are shown: the case where the two signals are trained and sampled 

independently (uncorrelated) and the case where the two signals have been trained and sampled with the 

correlated FVARMA. One can see that there is no difference in correlated and uncorrelated synthetic data. 

This result indicates that no (stochastic, short term) correlation is present between the data. Furthermore, it 

can be seen from the rPV plots that each day is the same, destroying any possibility for short-term 

correlation between the demand and the rPV. As mentioned previously, the available rPV data provided by 

APS contains only one typical day for each month.  

 

 

a) b) 

 

c) d) 

Figure 25: Two-week period of demand and rPV generation: a) demand, uncorrelated FVARMA, 

b) rPV, uncorrelated FVARMA, c) demand, correlated FVARMA and d) rPV, correlated FVARMA. 
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To demonstrate that the correlation analysis works as well on real data in addition to the test case shown 

in Section 3.1.3, the day and night cycle has been removed from the Fourier trends and has been pushed 

into the FVARMA portion of the model. As mentioned, the correlation of demand and rPV generation, with 

both being low during the night and high during the day, is normally captured by the Fourier de-trending. 

Training a correlated FVARMA where the highest Fourier frequency is one week will push the day/night 

cycle into the noise of the signal that is treated by the FVARMA. If this noise is not correlated between the 

signals demand could go up while rPV goes down, but if the correlation is found by the model then the two 

signals should move up and down together. Since in this testing scenario the days are pushed inside the 

noise, actual days and nights are only statistically represented, i.e. there is no day and night anymore, but 

we should still see the correlated rise and fall of demand and rPV. The results shown in Figure 26 confirm 

that the correlated FVARMA is working as intended. One can see that even the delay in demand and rPV 

present in the training data is captured by the correlated FVARMA. 

 

 

Figure 26: Left) Three-day training data for demand and rPV; Right) Synthetic data with correlated 

FVARMA where lowest Fourier frequency is 1-week (for demonstration purposes only). 

 

Similar to the demand and rPV, Figure 27 shows a 2-week period of correlated demand and hub price. 

This figure also shows no apparent (stochastic, short term) correlation between the training data. 

 

Figure 27: 2-week period of demand and hub price: correlated FVARMA. 
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In conclusion, the following observations are made: 

- Reproduced demand, rPV and hub price data can be statistically meaningful with the FVARMA 

model when 2-month blocks are trained individually instead of the full year. It is suggested for 

future work that the “arbitrary” 2 month blocks are replaced by a cluster analysis, i.e. so that 

FVARMAs can be trained on groups of similar weeks or days throughout the year. It is believed 

that this will increase the quality of the synthetic data even further. 

- The FVARMA can reproduce signals with “flat regions” (e.g. zero production during the night) 

like the rPV generation with the help of the “zero filter” capability developed for the FVARMA 

module. However, it is suggested that additional signal treatment methods (in addition to Fourier) 

that are capable of capturing capped data, such as spikes, are assessed for use in the FVARMA 

model. 

- It has been shown that the recently implemented correlated FVARMA capability is working as 

intended. However, (after removing the long term trends and correlations by Fourier de-trending) 

no correlation could be found between the demand and the rPV or the demand and the hub price in 

the stochastic portion of the signal, although it is suspected that correlation exists and is an 

important driver for the economic analysis. Concerning the rPV data, higher resolution data is 

needed to be able to perform a correlation analysis. For the hub price it is assumed that there is no 

actual correlation or it is so weak or delayed that we cannot capture it. Further investigations for 

the input data are needed to gain a better understanding of whether correlation exists and, if so, 

how much. 

 

Net demand and hub price forecast 

Using the sampled demand and rPV generation, a net demand profile can be generated for future years. 

Net demand profiles for the two possible growth scenarios are shown. Figure 28 shows the demand forecast 

for the next 27 years (the remaining operating license period for PVGS). This is the same for both scenarios, 

i.e. a 3.3% growth per year. Figure 29 shows that the rPV production grows for the two scenarios where 

the rPV grows exponentially at 3.3% and, alternately, linearly at 200 MW/year. Finally, Figure 30 shows 

the resulting net demand for the two cases. 

One can see the resulting high variance and very large summer peaks by 2045. The rPV generation, in 

the case of linear scaling at 200 MW/yr, has a capacity of 6060 MW in the final year. The linear solar 

capacity additions are relatively small when compared to the demand, which increases exponentially. 

 

Figure 28: Exponential demand growth at 3.3%/year. 
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Figure 29: rPV growth: Left) linear at 200MW/year; Right) exponential at 3.3%/year. 

 

  

Figure 30: Net demand growth: Left) using rPV linear at 200MW/year; Right) using rPV exponential at 

3.3%/year. 

 

In conclusion, the following observations are made: 

- Depending on the net demand forecast model, the variance of the net demand changes considerably. 

Future work is needed to understand which forecast model (in general, not just out of the two 

presented here) is right for this type of analysis. 

- There is no forecast for the hub price. In addition, PV is considered a price taker at the hub and 

cannot influence its price. 
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4.2 APS case simulations 

This section presents the simulation results for the three APS cases using the input data in Section 4.1. 

First, the “reference” for the three cases is presented (red values in Sect. 4.1.1) followed by the sensitivity 

studies. 

4.2.1 Reference case 

The reference case uses the input data marked in red in Section 4.1.1. This data is summarized again 

for convenience in Table 11. Before the overall economic results for the reference case are shown and 

discussed, more detailed results are presented for the physics of the model (water flow and chemical 

composition throughout the system). Furthermore, a detailed breakdown of the cash flows is presented as 

well for selected cases. 

Table 11: Reference input values for APS cases. 

Parameter Reference value 

Net demand future projection Demand exponential/rPV linear 

Brackish water amount 5000 AF/year 

Max Cl- concentration 450 ppm 

Wholesale price 35 $/MWh 

Discount rate 10 % 

Project lifetime 27 years 

 

Detailed physical model results for selected cases 

Once the inputs in Table 11 are fixed, the problem has one additional degree of freedom: RO1_split, 

the percentage of water that goes to the RO1 after the WRF. RO1_split is directly proportional to the 

capacity of RO1. In practice, there is an optimum RO1 capacity that is unknown a priori. The optimum 

RO1 capacity is the capacity that produces the maximum chloride concentration allowable in the cooling 

water reservoirs. The optimum RO1 capacity will be discussed in the overall economics results later in this 

chapter. However, this goal in this section is to show some detailed model results that provide a foundation 

for the overall results presented later. Reference case results for two values of RO1_split are shown, i.e. 

20% and 80%. 

First, to understand the physics model, Figure 31 to Figure 33 show the water flows for CASE 0, 1 and 

2 throughout the system (20% and 80% RO1_split). The figures show the monthly water flows for one year. 

All other years are the same, calculated through the lifetime of the project (NumberOfYears). 

As one can see, for CASE 0 the water flow for RO1_split 20% and 80% are the same since in CASE 0 

no RO1 is built (e.g., this case provides a baseline for the other cases). Furthermore, since the WRF has no 

waste stream, the effluent water from the WWTP, the WRF inflow and outflow, and the water flow into the 

reservoirs are equal and match the PVGS water consumption in all months except July and September. In 

these two months the effluent water chloride concentration is higher than the limit of 450 ppm and, 

therefore, the “requested” PVGS water consumption (shown as blue dots in Figure 31 to Figure 33) has 

been adjusted according to Eq. 13 to account for the increased water consumption if ppm(Cl-)>450. This 

adjustment is only done for CASE 0. CASE 1 and CASE 2 always match the “requested” PVGS water. The 

chloride concentration in these two cases can be adjusted by changing the size of RO1. 
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For CASE 1, one can see that the amount of effluent water purchased in the case of RO1_split 80% is 

somewhat bigger than in the RO1_split 20% case. This is due to the fact that the RO1 waste stream is bigger 

(see “Water RO1 in” and “Water RO1 out” in the Figures) for the bigger RO1 (RO1_split 80%). 

Consequently, to get the same amount of water to the cooling towers in both cases (RO1_split 20% and 

80%), the amount of effluent water in the RO1_split 80% has to be bigger (for the same amount of brackish 

water purchased in both cases). It is worth mentioning that in both cases (RO1_split 20% and 80%), the 

recovery ratio of RO1, i.e. the amount of clean water compared to the waste stream is almost the same (see 

Figure 34) and always > 80%. Finally, in CASE 2 the brackish water is purified in RO2 and the waste of 

RO2 is injected into the WRSS. In the reference case presented here, the amount of brackish water 

purchased is relatively small compared to the PVGS water needs. Therefore, although the RO2 waste stream 

is considerably less than the brackish water acquired, the change in needed effluent water between CASE 

1 and CASE 2 is too small to be seen in the plots. That is not true if more brackish water is purchased and 

purified in RO2. 

After tracking the water through the system, we can next look to the evaporation ponds. The water flow 

to these ponds is the combined flow from the cooling tower blowdown and the RO1 waste stream. Figure 

35 shows the blowdown from the cooling towers for the status quo (CASE 0). As for the water flows 

discussed previously, RO1 is not built for CASE 0 and the blowdown for RO1_split 20% and 80% are the 

same. Consequently, only one figure is shown.  

Since the water flows for CASE 1 and CASE 2 are similar (see above), the blowdowns and RO1 waste 

streams are similar as well. Note that the RO waste stream not only depends on the inlet water flow but also 

on the water chemistry. Therefore, for the RO waste streams to be similar between CASE 1 and CASE 2, \ 

the RO inlet water chemistry should also be similar, which it is (see discussion on water chemistry later in 

this Section). Consequently, results are only shown for CASE 1 (for RO1_split 20% and 80%) in Figure 

36. One can see that while the blowdown from the cooling towers stays constant, the RO1 waste stream 

quadruples for the bigger RO1. 

It is worth noting that the overall plots presented later always indicate the maximum blowdown during 

the year corresponding to the green triangles in Figure 35 and Figure 36. This is the most conservative 

assumption for the economics analysis. The evaporation pond model could be refined in future iterations 

of the model. 

Next, we can investigate the variation of the chemical compositions throughout the model. Since the 

behavior is similar for CASE 0, 1 and 2 as well as for the different RO1 sizes, plots are only shown for 

CASE1, RO1_split 20%, in Figure 37. 

As one can see, for the small amount of brackish water acquired (compared to the overall PVGS water 

needs), the chemical composition of the effluent and brackish water blend is still close to the effluent 

chemistry. Then, all the chemicals are reduced to a constant value in the WRF except chloride and sodium. 

One should note that for calcium, in some months the constant value to which the WRF reduced the calcium 

concentration is actually higher than the inlet concentration. The chemical transfer model of the WRF could 

be refined in the future to avoid such unphysical behavior (even though the effect on the economics is 
negligible). Even if more brackish water is acquired, the chemical composition of the water at the outlet of 

the WRF is always the same (except for chloride and sodium), but the WRF chemical consumption and 

therefore the Operation and Maintenance (O&M) cost will change for changing WRF inlet chemistry. That 

said, it becomes clear now why the RO1 waste streams are similar between CASE 1 and CASE 2, although 

the water chemistry at the water source is quite different (effluent water blend with brackish water vs. RO2 

waste stream): The RO1 inlet conditions are determined by the WRF outlet (which are constant), not the 

water source. 
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Figure 31: Reference CASE 0, monthly water flows through the system for one year. 

Top) RO1_split 20%; Bottom) RO1_split 80%. 
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Figure 32: Reference CASE 1, monthly water flows through the system for one year. 

Top) RO1_split 20%; Bottom) RO1_split 80%. 
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Figure 33: Reference CASE 2, monthly water flows through the system for one year. 

Top) RO1_split 20%; Bottom) RO1_split 80%. 
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Figure 34: Reference CASE 1, monthly recovery ratio for RO1 for one year. 

Top) RO1_split 20%; Bottom) RO1_split 80%. 
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Figure 35: Reference CASE 0, monthly water flows to the reservoir ponds for one year. 

 

 

 

Figure 36: Reference CASE 1, monthly water flows to the reservoir ponds for one year. 

Top) RO1_split 20%; Bottom) RO1_split 80%. 
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It should be mentioned that, even though the RO model considers the effect of all 6 tracked chemicals 

at its inlet and computes concentrations for all of them at the RO1 permeate clean water stream, only the 

RO1 outlet chloride concentration is shown in Figure 37. Chloride is the limiting factor for the cooling 

water towers, while the other chemicals are already brought below their limits by the WRF and are further 

reduced by the RO1. 

It is worth noting that, similar to the water flows to the evaporation ponds, the overall plots presented 

later always indicate the maximum chloride concentration during the year (corresponding to the maximum 

of the pentagons in the “Chloride” plot in Figure 37). This is the most conservative assumption for the 

economics analysis. The reservoir pond model should be refined in future iterations of the model to yield a 

more realistic average chloride concentration. 

 

  

 Alkalinity Calcium 

 

  

 Chloride Magnesium 

 

  

 Sodium Sulfates 

Figure 37: Reference CASE 1, monthly water chemistry (6 tracked chemicals) through the system for one 

year; RO1_split 20%. 
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Detailed economics snapshots for selected cases 

After looking at the physical model in detail, we can have the same detailed look at the economic model 

of the system. In the same manner as before, results for CASE 0, 1 and 2 are shown for the reference inputs 

and for RO1_split 20% and 80%. 

Table 12 shows a breakdown of the relevant cash flows for CASE 0. Recall that only cash flows that 

vary between CASE 0, 1, and 2 are considered with an overall differential NPV analysis as the final goal. 

One can see that the effluent water acquisition costs are roughly ten times higher than the electricity cost 

for the WRF. Furthermore, for CASE 0, since no RO1 is built, the values for RO1_split 20% and 80% 

should be the same. One can see that they are indeed the same for the cash flows that don't depend on the 

stochastic inputs, but vary slightly for “APS electricity sales” which depend on the PV Hub price, a 

stochastic input that changes for every evaluation of the model. 

Table 13 shows the relevant cash flows for CASE 1 while Table 14 shows them for CASE 2. Looking 

at the water acquisition cost (effluent and brackish), one can see that for the small amount of brackish water 

considered in the reference case, the savings in effluent water cost are less than 5% in CASE 1 (RO1_split 

20%) and are nullified for the larger RO case. For CASE 2, where the purified brackish water is sold and 

nearly all the cooling water has to be purchased from the effluent source (the RO2 waste contributes some 

water), the effluent water cost is even higher than in CASE 0 (to compensate for the RO1 waste stream). 

Looking at the WRF O&M and electricity costs, one can see that the higher chemical concentrations in 

the WRF inlet stream for CASE 1 and 2 raise these costs by a maximum of 2%. The RO electricity cost is 

comparable to the one in the WRF per water unit, i.e. the RO electricity cost is comparable to the WRF for 

the large RO1, but only a fraction (~20%) in the case of RO1_split 20%. 

Furthermore, one can see that the RO1 capital cost varies between $45 million (RO1_split 20%) and 

$211 million (RO1_split 80%), while the capex for RO2 (for ~5000 AF/year brackish water) is ~$12 

million. As mentioned in the economics section, there is no economy of scale considered in the current 

model and it needs to be further investigated if the capex is still meaningful for such a small RO. 

Since the amount of brackish water acquired in CASE 1 and 2 and RO1_split 20% and 80% is the same, 

the brackish water capex and the electricity cost are equal for all cases. 

 

Table 12: Reference CASE 0, cash flow breakdown. Values shown for the first year of the project lifetime. 

RO1_split 20% and 80% (in million $). 

RO1_split  20% 80% 

Effluent water cost [year 1] 10.40 10.40 

WRF Variable O&M 25.43 25.43 

WRF electricity 1.75 1.75 

APS electricity sales 437.18 437.21 
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Table 13: Reference CASE 1, cash flow breakdown. Values shown for the first year of the project lifetime. 

RO1_split 20% and 80% (in million $). 

RO1_split  20% 80% 

Effluent water cost 9.84 10.41 

Brackish water cost 0.12 0.12 

WRF Variable O&M 25.48 26.14 

WRF electricity 1.77 1.88 

RO1 CAPEX 45.66 211.83 

RO1 electricity usage 0.37 1.57 

Brackish pump CAPEX 0.40 0.40 

Brackish elect. usage 0.07 0.07 

APS electricity sales 437.17 437.16 

 

 

Table 14: Reference CASE 2, cash flow breakdown. Values shown for the first year of the project lifetime. 

RO1_split 20% and 80% (in million $). 

RO1_split  20% 80% 

Effluent water cost 10.25 10.79 

Brackish water cost 0.12 0.12 

RO2 CAPEX 12.33 12.33 

RO2 electricity usage 0.12 0.12 

WRF Variable O&M 25.51 26.19 

WRF electricity 1.77 1.88 

RO1 CAPEX 45.69 212.46 

RO1 electricity usage 0.37 1.57 

Brackish pump CAPEX 0.40 0.40 

Brackish elect. usage 0.07 0.07 

APS electricity sales 437.17 437.16 
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Detailed economics related to the PV Hub price 

As discussed in the APS case description (see Chapter 2), the analysis considers two options to save 

money: a) The hope of having to trade less at the PV Hub (for potentially low or even negative prices) by 

adding APS baseload (addition of RO1 and RO2); b) Better economy from savings in water acquisition 

(effluent vs. brackish plus RO). The above tables suggest that for the small amount of brackish water 

considered, building RO1 is not economical, but it might become economical for larger amounts of brackish 

water acquired (discussed later in the sensitivity studies, Section 4.2.2). Furthermore, it appears that savings 

from raising the APS baseload with the ROs is of limited effect, as discussed below.  

Figure 38 shows the number of hours during each year of the project at which APS has to sell electricity 

at the PV Hub (𝐸𝐷𝑁𝑒𝑡 < 𝑃𝑜𝑤𝐴𝑃𝑆𝑐𝑜𝑟) as well as the yearly average price at which electricity has been sold 

at the hub. First, one can see that the number of hours at which electricity has to be sold at the hub increases 

during the project lifetime, reaching a maximum before going back down. This is expected and reflects the 

future behavior of the net demand volatility with the increasing rPV, i.e. the demand grows exponentially, 

while rPV grows linearly and the slope is the same for both at about 20 years into the project. Furthermore, 

one can see that the average price at which APS sold at the hub is around 8 $/MWh, which is lower than 

the retail price, i.e. it is beneficial to sell at the retail price compared to at the hub. This encourages APS to 

increase the baseload, as discussed. On the other hand, as one can see from Figure 38, APS only has to 

electricity at the hub for 20 hours/year, which is negligible. In addition, the difference of when APS has to 

sell at the hub in the status quo (CASE 0) and CASE 1 or 2 is even smaller (difference between green 

tringles and blue dots). Keep in mind that it is this difference that provided the improved economics by 

adding the additional baseload in the form of RO1 and RO2. It should be considered that this result depends 

on the stochastic nature of the PV Hub price. To account for that, 10000 samples have been run for this 

analysis and the mean and standard deviations of the hours sold at the hub, as well as its mean hub price, 

are shown in Figure 39 and Figure 40. One can see that the conclusions made from the single time history 

remain true for the 10000 run averages. 

 

 

Figure 38: Reference cases, yearly number of hours when electricity is sold at the PV Hub and the average 

hub price at which electricity has been sold for each year of the project lifetime. 
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Figure 39: Results for 104 runs: Mean and standard deviation for number of hours during a year when 

electricity has to be sold at the PV Hub. 
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Figure 40: Results for 104 runs: Mean and standard deviation for yearly average hub price when electricity 

has to be sold at the PV Hub. 

 

To assess the maximum value of the PV Hub, one could assess the opportunity to take (“buy”) 

electricity from the hub when its price is negative. Figure 41 shows the number of hours (for each year 

during the project) for which the internal APS demand is bigger than the APS power share of PVGS 

(𝐸𝐷𝑁𝑒𝑡 > 𝑃𝑜𝑤𝐴𝑃𝑆𝑐𝑜𝑟) and, at the same time, the hub price is negative (mean and standard deviation of 

10000 runs). During these hours, APS could decide to curtail all its assets (except PVGS) and cover the 

demand with the hub. In that case, APS could cover the demand and make money from the hub. The 

maximum of this “opportunity revenue” could be calculated by (𝐸𝐷𝑁𝑒𝑡 − 𝑃𝑜𝑤𝐴𝑃𝑆𝑐𝑜𝑟) ∙ −1 ∙ 𝑃𝐸,𝐻𝑢𝑏 for 

each of these hours. Figure 42 shows that opportunity revenue (for each year during the project) (mean and 

standard deviation of 10000 runs). One can see that the maximum opportunity to absorb volatility at the 

hub is ~$25 to ~55 million in 27 years. This corresponds to less than 5 to 10% of the total APS revenue 

from electricity sales. 
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Figure 41: Results for 104 runs: Mean and standard deviation for yearly number of hours when 𝐸𝐷𝑁𝑒𝑡 >
𝑃𝑜𝑤𝐴𝑃𝑆𝑐𝑜𝑟  and the hub price is negative at the same time. 
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Figure 42: Results for 104 runs: Mean and standard deviation for yearly possible opportunity revenue during 

hours when 𝐸𝐷𝑁𝑒𝑡 > 𝑃𝑜𝑤𝐴𝑃𝑆𝑐𝑜𝑟 and the hub price is negative at the same time. 

 

In conclusion, one can say that the maximum opportunity to absorb volatility at the hub by simply add 

baseload is less that 10% of the total revenue of APS electricity sales. On the other hand, the actual gain 

from this effect by adding RO1 and RO2 is negligible. These findings don't seem to be in line with APS 

internal findings and need to be confirmed. In particular, hub price projection models should be investigated 

and added to this APS case study. 

Overall economic results for reference cases 

After presenting the physics results of the model as well as the detailed economics, we can look at the 

overall economic results for the reference cases. 

For the overall plots, the monthly results presented previously for RO1_split 20% and 80% are both 

shown for one year, supplemented by more results for other values of RO1_split. Results are then presented 

as a function of RO1_split. For better readability, the x-axis shows the RO1 capacity instead of RO1_split 

(which are directly proportional). Figure 43 shows the delta NPV between CASE 1 and CASE 0 as well as 

the LCOW that offsets the difference in water acquisition cost between CASE 0 and CASE 2 (capex and 

O&M of RO1 and 2, difference in O&M of WRF, etc.) for CASE 2, as discussed in Section 3.2.5. One can 

see that, for a fixed amount of brackish water purchased, the delta NPV becomes more and more negative 



 

 64 

the as the size of RO1 increases. One can see that for a very small RO1, the delta NPV is positive, which 

means that this size of RO1 is economically viable. For CASE 2, one can see that the LCOW increases for 

increasing RO1 capacity. This can be explained, since the LCOW has to offset the increased expenses 

associated with RO1 for a fixed size of RO2. The size of RO2 is set by the amount of brackish water 

acquired which is always the same, independent of RO1 size, i.e. the amount of purified brackish water 

sold is always the same for the different sizes of RO1. A sensitivity to the amount of brackish water pumped 

is show later in Section 4.2.2. 

A review of Figure 43 suggests that the smallest possible RO1 should be built. To determine this 

minimum RO1 size consider Figure 44, which shows the constraint that the reservoir water must have a 

chloride concentration < 450 ppm. As one can see, to satisfy that condition, an RO1 with a capacity greater 

than ~500 kg/s should be built. On the other hand, a larger RO1 is not needed, since there is no benefit from 

purer water. Finally, Figure 45 shows the second constraint on the system, which is the water flow to the 

evaporation ponds. 

In conclusion, we can say that for the reference case: 

- CASE 1 

o An RO1 of ~500 kg/s capacity is needed to satisfy the maximum chloride concentration in 

the reservoir ponds. 

o For that size of RO1, the delta NPV between CASE 1 and CASE 0 is negative, i.e. it is 

economically beneficial to keep buying 100% effluent water rather than to build the RO1. 

- CASE 2 

o The size of RO1 needed in CASE 2 to satisfy the needed chloride concentration is 

comparable to CASE 1, i.e. ~500 kg/s. 

o The LCOW that offsets the cost in that case is ~0.15 cents/liter (1.5 $/m3). This amount is 

on the expensive side, but one has to keep in mind that for the reference case, only 5000 

acre-foot (~6.2 million m3) of brackish water are purified per year. 

Finally, it is worth reminding the reader that the needed size of RO1 for this case is based in the 

maximum chloride concentration in the reservoir ponds. As discussed, a more realistic model of these ponds 

will reduce the necessary RO1 size and may push it in the economically viable space. 

 

 

Figure 43: Reference case: Delta NPV for CASE 1 and LCOW for CASE 2 as a function of RO1 capacity. 
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Figure 44: Reference case: Maximum chloride concentration in the reservoir ponds for CASE 1 and CASE 

2 as a function of RO1 capacity. 

 

 

Figure 45: Reference case: Maximum water flow to the evaporation ponds for CASE 1 and CASE 2 as a 

function of RO1 capacity. 

 

4.2.2 Sensitivity studies 

A variety of sensitivity studies were performed to assess the effect of important input parameters on 

the economic results. Table 15 summarizes the sensitivity studies performed. The plots shown for the 

sensitivity studies further collapse the plots shown in the overall economic results for the reference case 

above. Only the values (delta NPV, LCOW, etc.) at the optimum RO1 capacity are reported as a function 

of the sensitivity variable (discount rate, wholesale price, etc.), i.e. at the minimum RO1 capacity that still 

satisfies the chloride concentration constraint. 
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Table 15: Sensitivity studies performed (reference in red). 

Discount rate 5, 10, 15 %  

Wholesale electricity price 30.0, 35.0, 40.0 $/MWh 

Project lifetime 27, 47 years 

Net demand projection model - Demand scales exponentially with 

3.3% while the rPV grows linearly, 

adding 200 MW/year. 

- Both the demand and rPV grow 

exponentially 3.3% per year. 

Amount of brackish water 400, 1200, 2400, 4000 AF/month 

Reservoir pond chloride 

concentration limit 

 

450.0, 500.0 ppm 

 

Discount rate 

The first sensitivity analyzed is for the discount rate used to compute the NPV (see Section 3.2.5). 

Figure 46 shows the capacities for the RO1 (optimum only, as discussed above), RO2 (for the fixed amount 

of brackish water acquired) as well as the brackish water pump capacity as a function of the discount rate. 

Note that the optimum RO1 capacity is different for CASE 1 and CASE 2. Figure 47 shows the 

corresponding maximum water flows to the evaporation ponds. These results indicate that the capacities 

and water flows (i.e. the physics of the problem) are not affected by the discount rate. Finally, Figure 48 

shows the delta NPV and LCOW as a function of the discount rate. Since the physics is not affected by the 

discount rate, but only the economics, the delta NPV becomes more negative while the LCOW for CASE 

2 increases with growing discount rate, as expected. 
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Figure 46: Sensitivity study: Discount rate. Optimum RO and pump capacities. 

 

 

Figure 47: Sensitivity study: Discount rate. Maximum water flows to evaporation ponds. 
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Figure 48: Sensitivity study: Discount rate. Delta NPV (CASE 1) and LCOW (CASE 2). 

 

Wholesale electricity price 

In the same way as shown for the discount rate, the sensitivity for the wholesale electricity price is 

assessed. Figure 49 shows the capacities as a function of the wholesale price while Figure 50 shows the 

corresponding maximum water flows to the evaporation ponds. It can be seen that the capacities and water 

flows (i.e. the physical behavior of the system) are not affected by the wholesale price. Finally, Figure 51 

shows the delta NPV and LCOW as a function of the wholesale price. Since the physical behavior of the 

system is not affected by the discount rate, but only the economics, the delta NPV becomes more negative 

while the LCOW for CASE 2 increases with increasing discount rate, as expected. It is worth mentioning 

that even for the lowest wholesale price of 30 $/MWh, CASE 1 is not economically viable (delta NPV 

negative) while the LCOW for CASE 2 is ~1.73 $/m3 of purified water. 

 

 

Figure 49: Sensitivity study: Wholesale electricity price. Optimum RO and pump capacities. 
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Figure 50: Sensitivity study: Wholesale electricity price. Maximum water flows to evaporation ponds. 

 

 

Figure 51: Sensitivity study: Wholesale electricity price. Delta NPV (CASE 1) and LCOW (CASE 2). 

 

Project lifetime 

The next parameter evaluated is the project lifetime. While the current PVGS license is valid for an 

additional 27 years, PVGS may consider seeking a license extension for another 20 years. Analogous to the 

other sensitivities, Figure 52 shows the optimum capacities, Figure 53 the water flows to the evaporation 

ponds and Figure 54 shows the delta NPV and LCOW as a function of the project lifetime. As expected, 

the delta NPV becomes less negative (CASE 1) and the LCOW is reduced for the longer project lifetime. 
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Figure 52: Sensitivity study: Project lifetime. Optimum RO and pump capacities. 

 

 

Figure 53: Sensitivity study: Project lifetime. Maximum water flows to evaporation ponds. 
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Figure 54: Sensitivity study: Project lifetime. Delta NPV (CASE 1) and LCOW (CASE 2). 

 

Net demand projection model 

As mentioned, two different net demand forecast models were investigated. Analogous to the other 

sensitivities, Figure 55 shows the optimum capacities, Figure 56 shows the water flows to the evaporation 

ponds and Figure 57 shows the delta NPV and LCOW for the two models. (Note that “exp/lin” on the x-

axis represents the reference case where demand scales exponentially at 3.3% growth per year while the 

rPV grows linearly, adding 200 MW/year, and “exp/exp” represents the case where both the demand and 

rPV exponentially grow 3.3% per year.) 

 

 

Figure 55: Sensitivity study: Net demand projection model. Optimum RO and pump capacities. 
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Figure 56: Sensitivity study: Net demand projection model. Maximum water flows to evaporation ponds. 

 

 

Figure 57: Sensitivity study: Net demand projection model. Delta NPV (CASE 1) and LCOW (CASE 2). 

 

Amount of brackish water purchased and reservoir pond chloride concentration limit 

For the last sensitivity study, a combination of the amount of brackish water acquired and allowed 

chloride level in the reservoir ponds are evaluated. First consider the case in which the chloride 

concentration is limited to 450 ppm as for the reference case. As for the other sensitivities, Figure 58 shows 

the optimum capacities, Figure 59 the water flows to the evaporation ponds and Figure 60 shows the delta 

NPV and LCOW as a function of the brackish water acquired. As one can see, in CASE 1 the size of RO1 

grows linearly with the amount of brackish water acquired. For CASE 2, one can see that the optimum size 

of RO1 is increasing faster than the required size of RO2 for increasing amounts of brackish water. Looking 

at the delta NPV for CASE 1 (Figure 60), one can see that it is slightly decreasing with increasing brackish 
water intake. For the reference case, we have seen that the delta NPV varied from $0 to -$80 million for the 

RO1 size corresponding to 0 to 100% of the PVGS water treated. In the case where more brackish water is 
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purchased and processed through a larger RO1, the delta NPV is within ~$6 million of the base case. This 

result indicates that the savings realized by purchasing brackish water compared to effluent water are 

roughly offset by the increased RO1 cost; even purchasing more brackish water (vs. larger quantities of 

effluent) does not bring CASE 1 into the economically viable region. The same appears to be true for CASE 

2. Although the LCOW for the purified water decreases with an increasing amount of brackish water 

purchased, the change is only 1.7 $/m3 to 1.1 $/m3 for an increase in brackish water purchased from 5000 

acre-feet/year to 50000 acre-feet/year. These results suggest that the increasing sizes needed for RO2 and 

RO1 to process the increasing amounts of brackish water offset the revenue from the purified water sales. 

The same sensitivity for the amount of brackish water acquired was performed, but allowing a chloride 

concentration of 500 ppm in the cooling water reservoirs. For that study the RO sizes were determined to 

allow for 500 ppm chloride and the amount of cooling water in the towers was adjusted for the increased 

blowdown (see Eq. 13). Figure 61 shows the optimum capacities, Figure 62 shows the water flows to the 

evaporation ponds and Figure 63 shows the delta NPV and LCOW as a function of the brackish water 

acquired (allowing 500 ppm maximum chloride concentration). Considering the necessary RO capacities 

(Figure 61), one can see that allowing 500 ppm chloride in the cooling water eliminates the need for RO1 

needs to be built up to ~1e10 kg/year (~8000 acre-feet/year) of brackish water acquired. For larger amounts 

of brackish water the behavior is similar to the case where the chloride is limited to 450 ppm, i.e. delta NPV 

becomes more negative (CASE 1) and LCOW increases (CASE 2) for increasing amounts of brackish water 

purchased. Additionally, although less negative than the 450 ppm limit case, CASE 1 for the 500 ppm limit 

is still not economically viable for any amount of brackish water. 

 

 

Figure 58: Sensitivity study: Brackish water, max Cl- 450 ppm. Optimum RO and pump capacities. 
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Figure 59: Sensitivity study: Brackish water, max Cl- 450 ppm. Maximum water flows to evaporation 

ponds. 

 

 

Figure 60: Sensitivity study: Brackish water, max Cl- 450 ppm. Delta NPV (CASE 1) and LCOW (CASE 

2). 

 



 

 75 

 

Figure 61: Sensitivity study: Brackish water, max Cl- 500 ppm. Optimum RO and pump capacities. 

 

 

Figure 62: Sensitivity study: Brackish water, max Cl- 500 ppm. Maximum water flows to evaporation 

ponds. 
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Figure 63: Sensitivity study: Brackish water, max Cl- 500 ppm. Delta NPV (CASE 1) and LCOW (CASE 

2). 

 

As a final investigation, instead of scaling the ROs for the maximum chloride concentration (which is 

the most conservative case), the economics analysis was performed by limiting the volume weighted yearly 

average chloride concentration to 450 ppm. This is the least conservative case, as it can allow for the 

chloride concentration to exceed 450 ppm at some moments in time. The true reservoir chloride 

concentration lies somewhere between the two extreme cases. As mentioned, a more detailed reservoir 

model that considers the pool water mixing with the incoming water from the WRF and RO1 is needed to 

make a more detailed assessment of the actual time dependent chloride concentration seen by the PVGS 

cooling towers. As one can see, considering the average chloride concentration instead of the maximum 

means that no RO1 is needed in CASE 1 up to ~ 2e10 kg/year (~ 16000 acre-feet/year) of brackish water 

acquired. Furthermore, one can see that CASE 1 becomes economically viable for all amounts of brackish 

water acquired (delta NPV > 0), while LCOW is ~1 $/m3 of purified water. 

 

 

Figure 64: Sensitivity study: Brackish water, average Cl- 450 ppm. Optimum RO and pump capacities. 
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Figure 65: Sensitivity study: Brackish water, average Cl- 450 ppm. Delta NPV (CASE 1) and LCOW 

(CASE 2). 

 

5. CONCLUSIONS AND FUTURE WORK 

This section provides a summary of the conclusions drawn from the analysis results and provides 

recommendations for possible future work. First, these conclusions identify where more detailed data is 

required and more accurate model assumptions are necessary to reproduce all of the driving physical and 

economic phenomena in order to capture sufficient complexity such that APS can apply these results to 

strategic decisions. Second, areas for possible extension of the cases evaluated in this report are presented. 

 

5.1 Conclusion 

Considering the stochastic data demand, rPV and electricity price at the PV Hub, it has been shown 

that: 

- Statistically meaningful demand, rPV and hub price data can be reproduced with the recently 

implemented FVARMA model when 2 month blocks are trained individually versus training using 

the full year. It is suggested for future work that the “arbitrary” 2 month blocks be replaced by a 

cluster analysis, i.e. so that FVARMAs can be trained on groups of similar weeks or days 

throughout the year. It is believed that this will increase the quality of the synthetic data even 

further. 

- The FVARMA can reproduce capped signals like the rPV generation with the help of the “zero 

filter” capability developed for the FVARMA module. However, it is suggested that additional 

signal treatment methods (in addition to Fourier) that are capable of capturing capped data like 

spikes are assessed for use in the FVARMA model. 

- It has been shown that the correlated FVARMA capability is working as intended. However, no 

correlation could be found between the demand and the rPV or the demand and the hub price, 

although it is suspected that correlation exists and is an important driver for the economic analysis. 

Concerning the rPV data, higher resolution data is needed to support a correlation analysis. For the 
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hub price it is assumed that there is no actual correlation or it is so weak or delayed that it cannot 

be captured. 

- Depending on the net demand forecast model, the variance of the net demand changes considerably. 

Future work is necessary to understand which forecast model (in general, not just out of the two 

presented here) is best for this type of analysis. 

- There is no forecast for the hub price. In addition, PVGS is considered a price taker at the hub and 

cannot influence its price. A better market model is needed. 

Considering the effect of adding an RO load to mitigate the effect of negative prices at the Palo Verde Hub 

due to increasing VRE penetration, it has been shown that: 

- The number of hours when APS has to sell excess electricity at the hub is negligible. Recall that 

only rooftop solar is considered, but no (curtailable) industrial solar. The future projection of the 

net demand and the hub prices show that APS could curtail its internal production to take advantage 

of negative electricity prices at the Palo Verde Hub. This could add up to an additional 10% of the 

APS revenue. While in principle adding more internal baseload (i.e. RO electricity consumption) 

enhances such capability, the size of the RO in this study is such that the effect is negligible. These 

findings do not seem to be in line with APS internal findings and need to be confirmed. In particular, 

hub price projection models should be investigated and added to this APS case study. 

- The economic benefits of installing an RO are realized via savings in the water acquisition costs, 

not in mitigating VRE penetration. 

For the reference cases studied, it has been shown that: 

- CASE 1: An RO1 of ~500 kg/s capacity is needed to satisfy the maximum chloride concentration 

in the reservoir ponds. For that size of RO1, the delta NPV between CASE 1 and CASE 0 is 

negative, i.e. it is economically beneficial to keep buying 100% effluent water rather than build the 

RO1. 

- CASE 2: The size of RO1 needed in CASE 2 is comparable to CASE 1, i.e. ~500 kg/s. The LCOW 

that offsets the cost in that case is ~0.15 cents/liter (1.5 $/m3). This amount appears expensive, but 

one has to keep in mind that for the reference case, only 5000 acre-feet of brackish water are 

purified per year. 

The following conclusions are drawn from the sensitivity studies on the input parameters: 

- Sensitivities on the Discount Rate, Wholesale Electricity Price and Project Lifetime change the 

delta NPV for CASE 1 and the LCOW for CASE 2, but these studies do not change the conclusions 

drawn from the reference case. 

- When keeping the chloride limit at 450 ppm and purchasing more brackish water, analyses indicate 

that the savings made by buying brackish water compared to effluent water are roughly offset by 

the increased RO1 cost. Buying more brackish water does not bring CASE1 into the economically 
viable region. The same conclusion seems to be true for CASE 2. It looks as though the increasing 

sizes needed for RO2 and RO1 to process increasing amounts of brackish water purchased offset 

the revenue from the purified water sales. 

- Allowing up to 500 ppm chloride in the cooling water removes the need to build RO1 for up to 

~1e10 kg/year (~ 8000 acre-feet/year) of brackish water acquired. 

- Considering the average chloride concentration instead of the maximum means that no RO1 is 

needed in CASE 1 up to ~2e10 kg/year (~16000 acre-feet/year) of brackish water acquired. 

Furthermore, CASE 1 becomes economically viable for all amounts of brackish water acquired 

(delta NPV > 0), while LCOW is ~1 $/m3 of purified water. A more realistic model of the reservoir 

ponds is needed to refine the results. 
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5.2 Future Work 

The above-mentioned conclusions suggest several further investigation directions. The first step needed 

would be to improve the representation of the condition under which APS operates. In particular: 

• Better data are needed to generate a more reliable model of the net demand and Palo Verde 

Hub prices. In particular, it will be necessary to have higher resolution rPV data to better 

correlate electricity demand and hub prices to the rPV production. 

• The above-mentioned increase in data resolution should be paired with an improved projection 

model for scaling the APS internal demand and rPV production over the lifetime of the project. 

• A projection model for the lifetime of the project and possibly an elasticity curve of the price 

at the PV Hub would be necessary to define a strategy that optimizes the utilization of the PV 

Hub imbalance market. 

Once a higher fidelity scenario is available via the above-mentioned improvements in data and 

prediction models, several strategies can be considered to increase the economic performance of PVGS for 

APS. These strategies include the following: 

• Consider the possibility of using the reservoir pond as a means to smooth out the salinity peak 

(average salinity limited case). 

• Consider the possibility of using the reservoir pond as a battery, which would make the RO1 

and the WRF a variable load without jeopardizing the water supply to PVGS. 

• If net demand falls below the PVGS capacity examine the financial implications of performing 

“economical dispatch” (i.e. load following) versus increasing the base load via a large 

desalination plant. 
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